ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitinvinv Unicode version

Theorem unitinvinv 13886
Description: The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1  |-  U  =  (Unit `  R )
unitinvcl.2  |-  I  =  ( invr `  R
)
Assertion
Ref Expression
unitinvinv  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
I `  ( I `  X ) )  =  X )

Proof of Theorem unitinvinv
StepHypRef Expression
1 unitinvcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
21a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
3 eqid 2205 . . . . . . 7  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
43a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
) )
5 ringsrg 13809 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
62, 4, 5unitgrpbasd 13877 . . . . 5  |-  ( R  e.  Ring  ->  U  =  ( Base `  (
(mulGrp `  R )s  U
) ) )
76eleq2d 2275 . . . 4  |-  ( R  e.  Ring  ->  ( X  e.  U  <->  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
87pm5.32i 454 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  <->  ( R  e.  Ring  /\  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
91, 3unitgrp 13878 . . . 4  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
10 eqid 2205 . . . . 5  |-  ( Base `  ( (mulGrp `  R
)s 
U ) )  =  ( Base `  (
(mulGrp `  R )s  U
) )
11 eqid 2205 . . . . 5  |-  ( invg `  ( (mulGrp `  R )s  U ) )  =  ( invg `  ( (mulGrp `  R )s  U
) )
1210, 11grpinvinv 13399 . . . 4  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  X  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )  ->  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) )  =  X )
139, 12sylan 283 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  (
(mulGrp `  R )s  U
) ) )  -> 
( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) )  =  X )
148, 13sylbi 121 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( invg `  ( (mulGrp `  R )s  U
) ) `  (
( invg `  ( (mulGrp `  R )s  U
) ) `  X
) )  =  X )
15 unitinvcl.2 . . . . . . 7  |-  I  =  ( invr `  R
)
1615a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  I  =  ( invr `  R
) )
17 id 19 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Ring )
182, 4, 16, 17invrfvald 13884 . . . . 5  |-  ( R  e.  Ring  ->  I  =  ( invg `  ( (mulGrp `  R )s  U
) ) )
1918fveq1d 5578 . . . . 5  |-  ( R  e.  Ring  ->  ( I `
 X )  =  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) )
2018, 19fveq12d 5583 . . . 4  |-  ( R  e.  Ring  ->  ( I `
 ( I `  X ) )  =  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) ) )
2120eqeq1d 2214 . . 3  |-  ( R  e.  Ring  ->  ( ( I `  ( I `
 X ) )  =  X  <->  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) )  =  X ) )
2221adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  (
I `  X )
)  =  X  <->  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) )  =  X ) )
2314, 22mpbird 167 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
I `  ( I `  X ) )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   Grpcgrp 13332   invgcminusg 13333  mulGrpcmgp 13682   Ringcrg 13758  Unitcui 13849   invrcinvr 13882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-oppr 13830  df-dvdsr 13851  df-unit 13852  df-invr 13883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator