ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzass4 Unicode version

Theorem fzass4 10219
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzass4  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( B  e.  ( A ... C
)  /\  C  e.  ( A ... D ) ) )

Proof of Theorem fzass4
StepHypRef Expression
1 simpll 527 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  B  e.  (
ZZ>= `  A ) )
2 simprl 529 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  B ) )
31, 2jca 306 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) ) )
4 uztrn 9700 . . . . . 6  |-  ( ( C  e.  ( ZZ>= `  B )  /\  B  e.  ( ZZ>= `  A )
)  ->  C  e.  ( ZZ>= `  A )
)
54ancoms 268 . . . . 5  |-  ( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B )
)  ->  C  e.  ( ZZ>= `  A )
)
65ad2ant2r 509 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  A ) )
7 simprr 531 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  C ) )
83, 6, 7jca32 310 . . 3  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( ( B  e.  ( ZZ>= `  A
)  /\  C  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
9 simpll 527 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  B  e.  (
ZZ>= `  A ) )
10 uztrn 9700 . . . . . . 7  |-  ( ( D  e.  ( ZZ>= `  C )  /\  C  e.  ( ZZ>= `  B )
)  ->  D  e.  ( ZZ>= `  B )
)
1110ancoms 268 . . . . . 6  |-  ( ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>= `  C )
)  ->  D  e.  ( ZZ>= `  B )
)
1211ad2ant2l 508 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  B ) )
139, 12jca 306 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  B ) ) )
14 simplr 528 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  B ) )
15 simprr 531 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  C ) )
1613, 14, 15jca32 310 . . 3  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( ( B  e.  ( ZZ>= `  A
)  /\  D  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
178, 16impbii 126 . 2  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  <-> 
( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) )  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
18 elfzuzb 10176 . . 3  |-  ( B  e.  ( A ... D )  <->  ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  B ) ) )
19 elfzuzb 10176 . . 3  |-  ( C  e.  ( B ... D )  <->  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) )
2018, 19anbi12i 460 . 2  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
21 elfzuzb 10176 . . 3  |-  ( B  e.  ( A ... C )  <->  ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) ) )
22 elfzuzb 10176 . . 3  |-  ( C  e.  ( A ... D )  <->  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) )
2321, 22anbi12i 460 . 2  |-  ( ( B  e.  ( A ... C )  /\  C  e.  ( A ... D ) )  <->  ( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
2417, 20, 233bitr4i 212 1  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( B  e.  ( A ... C
)  /\  C  e.  ( A ... D ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2178   ` cfv 5290  (class class class)co 5967   ZZ>=cuz 9683   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltwlin 8073
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-neg 8281  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by:  ccatswrd  11161  ccatpfx  11192
  Copyright terms: Public domain W3C validator