ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzass4 Unicode version

Theorem fzass4 9530
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzass4  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( B  e.  ( A ... C
)  /\  C  e.  ( A ... D ) ) )

Proof of Theorem fzass4
StepHypRef Expression
1 simpll 497 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  B  e.  (
ZZ>= `  A ) )
2 simprl 499 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  B ) )
31, 2jca 301 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) ) )
4 uztrn 9089 . . . . . 6  |-  ( ( C  e.  ( ZZ>= `  B )  /\  B  e.  ( ZZ>= `  A )
)  ->  C  e.  ( ZZ>= `  A )
)
54ancoms 265 . . . . 5  |-  ( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B )
)  ->  C  e.  ( ZZ>= `  A )
)
65ad2ant2r 494 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  A ) )
7 simprr 500 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  C ) )
83, 6, 7jca32 304 . . 3  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( ( B  e.  ( ZZ>= `  A
)  /\  C  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
9 simpll 497 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  B  e.  (
ZZ>= `  A ) )
10 uztrn 9089 . . . . . . 7  |-  ( ( D  e.  ( ZZ>= `  C )  /\  C  e.  ( ZZ>= `  B )
)  ->  D  e.  ( ZZ>= `  B )
)
1110ancoms 265 . . . . . 6  |-  ( ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>= `  C )
)  ->  D  e.  ( ZZ>= `  B )
)
1211ad2ant2l 493 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  B ) )
139, 12jca 301 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  B ) ) )
14 simplr 498 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  B ) )
15 simprr 500 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  C ) )
1613, 14, 15jca32 304 . . 3  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( ( B  e.  ( ZZ>= `  A
)  /\  D  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
178, 16impbii 125 . 2  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  <-> 
( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) )  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
18 elfzuzb 9488 . . 3  |-  ( B  e.  ( A ... D )  <->  ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  B ) ) )
19 elfzuzb 9488 . . 3  |-  ( C  e.  ( B ... D )  <->  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) )
2018, 19anbi12i 449 . 2  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
21 elfzuzb 9488 . . 3  |-  ( B  e.  ( A ... C )  <->  ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) ) )
22 elfzuzb 9488 . . 3  |-  ( C  e.  ( A ... D )  <->  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) )
2321, 22anbi12i 449 . 2  |-  ( ( B  e.  ( A ... C )  /\  C  e.  ( A ... D ) )  <->  ( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
2417, 20, 233bitr4i 211 1  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( B  e.  ( A ... C
)  /\  C  e.  ( A ... D ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 1439   ` cfv 5028  (class class class)co 5666   ZZ>=cuz 9073   ...cfz 9478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7490  ax-resscn 7491  ax-pre-ltwlin 7512
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-neg 7710  df-z 8805  df-uz 9074  df-fz 9479
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator