ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzass4 Unicode version

Theorem fzass4 10048
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzass4  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( B  e.  ( A ... C
)  /\  C  e.  ( A ... D ) ) )

Proof of Theorem fzass4
StepHypRef Expression
1 simpll 527 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  B  e.  (
ZZ>= `  A ) )
2 simprl 529 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  B ) )
31, 2jca 306 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) ) )
4 uztrn 9533 . . . . . 6  |-  ( ( C  e.  ( ZZ>= `  B )  /\  B  e.  ( ZZ>= `  A )
)  ->  C  e.  ( ZZ>= `  A )
)
54ancoms 268 . . . . 5  |-  ( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B )
)  ->  C  e.  ( ZZ>= `  A )
)
65ad2ant2r 509 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  A ) )
7 simprr 531 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  C ) )
83, 6, 7jca32 310 . . 3  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( ( B  e.  ( ZZ>= `  A
)  /\  C  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
9 simpll 527 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  B  e.  (
ZZ>= `  A ) )
10 uztrn 9533 . . . . . . 7  |-  ( ( D  e.  ( ZZ>= `  C )  /\  C  e.  ( ZZ>= `  B )
)  ->  D  e.  ( ZZ>= `  B )
)
1110ancoms 268 . . . . . 6  |-  ( ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>= `  C )
)  ->  D  e.  ( ZZ>= `  B )
)
1211ad2ant2l 508 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  B ) )
139, 12jca 306 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  B ) ) )
14 simplr 528 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  B ) )
15 simprr 531 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  C ) )
1613, 14, 15jca32 310 . . 3  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( ( B  e.  ( ZZ>= `  A
)  /\  D  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
178, 16impbii 126 . 2  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  <-> 
( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) )  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
18 elfzuzb 10005 . . 3  |-  ( B  e.  ( A ... D )  <->  ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  B ) ) )
19 elfzuzb 10005 . . 3  |-  ( C  e.  ( B ... D )  <->  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) )
2018, 19anbi12i 460 . 2  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
21 elfzuzb 10005 . . 3  |-  ( B  e.  ( A ... C )  <->  ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) ) )
22 elfzuzb 10005 . . 3  |-  ( C  e.  ( A ... D )  <->  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) )
2321, 22anbi12i 460 . 2  |-  ( ( B  e.  ( A ... C )  /\  C  e.  ( A ... D ) )  <->  ( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
2417, 20, 233bitr4i 212 1  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( B  e.  ( A ... C
)  /\  C  e.  ( A ... D ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2148   ` cfv 5212  (class class class)co 5869   ZZ>=cuz 9517   ...cfz 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-pre-ltwlin 7915
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-neg 8121  df-z 9243  df-uz 9518  df-fz 9996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator