ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzss1 Unicode version

Theorem fzss1 10099
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzss1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )

Proof of Theorem fzss1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzuz 10057 . . . . 5  |-  ( k  e.  ( K ... N )  ->  k  e.  ( ZZ>= `  K )
)
2 id 19 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ( ZZ>= `  M )
)
3 uztrn 9580 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
41, 2, 3syl2anr 290 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  k  e.  ( ZZ>= `  M )
)
5 elfzuz3 10058 . . . . 5  |-  ( k  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  k )
)
65adantl 277 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  N  e.  ( ZZ>= `  k )
)
7 elfzuzb 10055 . . . 4  |-  ( k  e.  ( M ... N )  <->  ( k  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  k ) ) )
84, 6, 7sylanbrc 417 . . 3  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  k  e.  ( M ... N
) )
98ex 115 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( K ... N
)  ->  k  e.  ( M ... N ) ) )
109ssrdv 3176 1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160    C_ wss 3144   ` cfv 5238  (class class class)co 5900   ZZ>=cuz 9563   ...cfz 10044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-pre-ltwlin 7959
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-neg 8166  df-z 9289  df-uz 9564  df-fz 10045
This theorem is referenced by:  fzssnn  10104  fzp1ss  10109  ige2m1fz  10146  fzoss1  10207  fzossnn0  10211  ser3mono  10517  iseqf1olemnab  10527  bcpasc  10787  mertenslemi1  11584  reumodprminv  12296  structfn  12542  strleund  12626  strleun  12627
  Copyright terms: Public domain W3C validator