| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzss1 | Unicode version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzss1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10217 |
. . . . 5
| |
| 2 | id 19 |
. . . . 5
| |
| 3 | uztrn 9739 |
. . . . 5
| |
| 4 | 1, 2, 3 | syl2anr 290 |
. . . 4
|
| 5 | elfzuz3 10218 |
. . . . 5
| |
| 6 | 5 | adantl 277 |
. . . 4
|
| 7 | elfzuzb 10215 |
. . . 4
| |
| 8 | 4, 6, 7 | sylanbrc 417 |
. . 3
|
| 9 | 8 | ex 115 |
. 2
|
| 10 | 9 | ssrdv 3230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltwlin 8112 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-neg 8320 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: fzssnn 10264 fzp1ss 10269 ige2m1fz 10306 fzoss1 10369 fzossnn0 10373 ser3mono 10709 seqsplitg 10711 iseqf1olemnab 10723 seqf1oglem2 10742 bcpasc 10988 swrdswrd 11237 swrdccatin2 11261 pfxccatin12lem2c 11262 pfxccatpfx2 11269 mertenslemi1 12046 reumodprminv 12776 structfn 13051 strleund 13136 strleun 13137 ply1termlem 15416 dvply1 15439 gausslemma2dlem3 15742 2lgslem1a 15767 |
| Copyright terms: Public domain | W3C validator |