ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzss1 Unicode version

Theorem fzss1 9855
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzss1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )

Proof of Theorem fzss1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzuz 9814 . . . . 5  |-  ( k  e.  ( K ... N )  ->  k  e.  ( ZZ>= `  K )
)
2 id 19 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ( ZZ>= `  M )
)
3 uztrn 9354 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
41, 2, 3syl2anr 288 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  k  e.  ( ZZ>= `  M )
)
5 elfzuz3 9815 . . . . 5  |-  ( k  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  k )
)
65adantl 275 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  N  e.  ( ZZ>= `  k )
)
7 elfzuzb 9812 . . . 4  |-  ( k  e.  ( M ... N )  <->  ( k  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  k ) ) )
84, 6, 7sylanbrc 413 . . 3  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  k  e.  ( M ... N
) )
98ex 114 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( K ... N
)  ->  k  e.  ( M ... N ) ) )
109ssrdv 3103 1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480    C_ wss 3071   ` cfv 5123  (class class class)co 5774   ZZ>=cuz 9338   ...cfz 9802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-pre-ltwlin 7745
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-neg 7948  df-z 9067  df-uz 9339  df-fz 9803
This theorem is referenced by:  fzssnn  9860  fzp1ss  9865  ige2m1fz  9902  fzoss1  9960  fzossnn0  9964  ser3mono  10263  iseqf1olemnab  10273  bcpasc  10524  mertenslemi1  11316  structfn  11992  strleund  12061  strleun  12062
  Copyright terms: Public domain W3C validator