ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzss1 Unicode version

Theorem fzss1 10019
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzss1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )

Proof of Theorem fzss1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzuz 9977 . . . . 5  |-  ( k  e.  ( K ... N )  ->  k  e.  ( ZZ>= `  K )
)
2 id 19 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ( ZZ>= `  M )
)
3 uztrn 9503 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
41, 2, 3syl2anr 288 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  k  e.  ( ZZ>= `  M )
)
5 elfzuz3 9978 . . . . 5  |-  ( k  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  k )
)
65adantl 275 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  N  e.  ( ZZ>= `  k )
)
7 elfzuzb 9975 . . . 4  |-  ( k  e.  ( M ... N )  <->  ( k  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  k ) ) )
84, 6, 7sylanbrc 415 . . 3  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  k  e.  ( M ... N
) )
98ex 114 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( K ... N
)  ->  k  e.  ( M ... N ) ) )
109ssrdv 3153 1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141    C_ wss 3121   ` cfv 5198  (class class class)co 5853   ZZ>=cuz 9487   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltwlin 7887
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-neg 8093  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by:  fzssnn  10024  fzp1ss  10029  ige2m1fz  10066  fzoss1  10127  fzossnn0  10131  ser3mono  10434  iseqf1olemnab  10444  bcpasc  10700  mertenslemi1  11498  reumodprminv  12207  structfn  12435  strleund  12506  strleun  12507
  Copyright terms: Public domain W3C validator