ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzopth Unicode version

Theorem fzopth 10185
Description: A finite set of sequential integers can represent an ordered pair. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzopth  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M ... N )  =  ( J ... K
)  <->  ( M  =  J  /\  N  =  K ) ) )

Proof of Theorem fzopth
StepHypRef Expression
1 eluzfz1 10155 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
21adantr 276 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  M  e.  ( M ... N
) )
3 simpr 110 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( M ... N )  =  ( J ... K
) )
42, 3eleqtrd 2284 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  M  e.  ( J ... K
) )
5 elfzuz 10145 . . . . . . 7  |-  ( M  e.  ( J ... K )  ->  M  e.  ( ZZ>= `  J )
)
6 uzss 9671 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  J
)  ->  ( ZZ>= `  M )  C_  ( ZZ>=
`  J ) )
74, 5, 63syl 17 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  M )  C_  ( ZZ>= `  J )
)
8 elfzuz2 10153 . . . . . . . . 9  |-  ( M  e.  ( J ... K )  ->  K  e.  ( ZZ>= `  J )
)
9 eluzfz1 10155 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  J
)  ->  J  e.  ( J ... K ) )
104, 8, 93syl 17 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  J  e.  ( J ... K
) )
1110, 3eleqtrrd 2285 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  J  e.  ( M ... N
) )
12 elfzuz 10145 . . . . . . 7  |-  ( J  e.  ( M ... N )  ->  J  e.  ( ZZ>= `  M )
)
13 uzss 9671 . . . . . . 7  |-  ( J  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  J )  C_  ( ZZ>=
`  M ) )
1411, 12, 133syl 17 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  J )  C_  ( ZZ>= `  M )
)
157, 14eqssd 3210 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  M )  =  ( ZZ>= `  J )
)
16 eluzel2 9655 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1716adantr 276 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  M  e.  ZZ )
18 uz11 9673 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  J
)  <->  M  =  J
) )
1917, 18syl 14 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  J
)  <->  M  =  J
) )
2015, 19mpbid 147 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  M  =  J )
21 eluzfz2 10156 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  J
)  ->  K  e.  ( J ... K ) )
224, 8, 213syl 17 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  K  e.  ( J ... K
) )
2322, 3eleqtrrd 2285 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  K  e.  ( M ... N
) )
24 elfzuz3 10146 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
25 uzss 9671 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  K ) )
2623, 24, 253syl 17 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  N )  C_  ( ZZ>= `  K )
)
27 eluzfz2 10156 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
2827adantr 276 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  N  e.  ( M ... N
) )
2928, 3eleqtrd 2284 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  N  e.  ( J ... K
) )
30 elfzuz3 10146 . . . . . . 7  |-  ( N  e.  ( J ... K )  ->  K  e.  ( ZZ>= `  N )
)
31 uzss 9671 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  N
)  ->  ( ZZ>= `  K )  C_  ( ZZ>=
`  N ) )
3229, 30, 313syl 17 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  K )  C_  ( ZZ>= `  N )
)
3326, 32eqssd 3210 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  N )  =  ( ZZ>= `  K )
)
34 eluzelz 9659 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3534adantr 276 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  N  e.  ZZ )
36 uz11 9673 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ZZ>= `  N )  =  ( ZZ>= `  K
)  <->  N  =  K
) )
3735, 36syl 14 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  (
( ZZ>= `  N )  =  ( ZZ>= `  K
)  <->  N  =  K
) )
3833, 37mpbid 147 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  N  =  K )
3920, 38jca 306 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( M  =  J  /\  N  =  K )
)
4039ex 115 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M ... N )  =  ( J ... K
)  ->  ( M  =  J  /\  N  =  K ) ) )
41 oveq12 5955 . 2  |-  ( ( M  =  J  /\  N  =  K )  ->  ( M ... N
)  =  ( J ... K ) )
4240, 41impbid1 142 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M ... N )  =  ( J ... K
)  <->  ( M  =  J  /\  N  =  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    C_ wss 3166   ` cfv 5272  (class class class)co 5946   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-apti 8042
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-neg 8248  df-z 9375  df-uz 9651  df-fz 10133
This theorem is referenced by:  fz0to4untppr  10248  2ffzeq  10265  gsumfzval  13256  gsumval2  13262
  Copyright terms: Public domain W3C validator