| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzopth | Unicode version | ||
| Description: A finite set of sequential integers can represent an ordered pair. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzopth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzfz1 10227 |
. . . . . . . . 9
| |
| 2 | 1 | adantr 276 |
. . . . . . . 8
|
| 3 | simpr 110 |
. . . . . . . 8
| |
| 4 | 2, 3 | eleqtrd 2308 |
. . . . . . 7
|
| 5 | elfzuz 10217 |
. . . . . . 7
| |
| 6 | uzss 9743 |
. . . . . . 7
| |
| 7 | 4, 5, 6 | 3syl 17 |
. . . . . 6
|
| 8 | elfzuz2 10225 |
. . . . . . . . 9
| |
| 9 | eluzfz1 10227 |
. . . . . . . . 9
| |
| 10 | 4, 8, 9 | 3syl 17 |
. . . . . . . 8
|
| 11 | 10, 3 | eleqtrrd 2309 |
. . . . . . 7
|
| 12 | elfzuz 10217 |
. . . . . . 7
| |
| 13 | uzss 9743 |
. . . . . . 7
| |
| 14 | 11, 12, 13 | 3syl 17 |
. . . . . 6
|
| 15 | 7, 14 | eqssd 3241 |
. . . . 5
|
| 16 | eluzel2 9727 |
. . . . . . 7
| |
| 17 | 16 | adantr 276 |
. . . . . 6
|
| 18 | uz11 9745 |
. . . . . 6
| |
| 19 | 17, 18 | syl 14 |
. . . . 5
|
| 20 | 15, 19 | mpbid 147 |
. . . 4
|
| 21 | eluzfz2 10228 |
. . . . . . . . 9
| |
| 22 | 4, 8, 21 | 3syl 17 |
. . . . . . . 8
|
| 23 | 22, 3 | eleqtrrd 2309 |
. . . . . . 7
|
| 24 | elfzuz3 10218 |
. . . . . . 7
| |
| 25 | uzss 9743 |
. . . . . . 7
| |
| 26 | 23, 24, 25 | 3syl 17 |
. . . . . 6
|
| 27 | eluzfz2 10228 |
. . . . . . . . 9
| |
| 28 | 27 | adantr 276 |
. . . . . . . 8
|
| 29 | 28, 3 | eleqtrd 2308 |
. . . . . . 7
|
| 30 | elfzuz3 10218 |
. . . . . . 7
| |
| 31 | uzss 9743 |
. . . . . . 7
| |
| 32 | 29, 30, 31 | 3syl 17 |
. . . . . 6
|
| 33 | 26, 32 | eqssd 3241 |
. . . . 5
|
| 34 | eluzelz 9731 |
. . . . . . 7
| |
| 35 | 34 | adantr 276 |
. . . . . 6
|
| 36 | uz11 9745 |
. . . . . 6
| |
| 37 | 35, 36 | syl 14 |
. . . . 5
|
| 38 | 33, 37 | mpbid 147 |
. . . 4
|
| 39 | 20, 38 | jca 306 |
. . 3
|
| 40 | 39 | ex 115 |
. 2
|
| 41 | oveq12 6010 |
. 2
| |
| 42 | 40, 41 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-apti 8114 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-neg 8320 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: fz0to4untppr 10320 2ffzeq 10337 gsumfzval 13424 gsumval2 13430 |
| Copyright terms: Public domain | W3C validator |