ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzopth Unicode version

Theorem fzopth 9624
Description: A finite set of sequential integers can represent an ordered pair. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzopth  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M ... N )  =  ( J ... K
)  <->  ( M  =  J  /\  N  =  K ) ) )

Proof of Theorem fzopth
StepHypRef Expression
1 eluzfz1 9594 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
21adantr 271 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  M  e.  ( M ... N
) )
3 simpr 109 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( M ... N )  =  ( J ... K
) )
42, 3eleqtrd 2173 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  M  e.  ( J ... K
) )
5 elfzuz 9585 . . . . . . 7  |-  ( M  e.  ( J ... K )  ->  M  e.  ( ZZ>= `  J )
)
6 uzss 9138 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  J
)  ->  ( ZZ>= `  M )  C_  ( ZZ>=
`  J ) )
74, 5, 63syl 17 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  M )  C_  ( ZZ>= `  J )
)
8 elfzuz2 9592 . . . . . . . . 9  |-  ( M  e.  ( J ... K )  ->  K  e.  ( ZZ>= `  J )
)
9 eluzfz1 9594 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  J
)  ->  J  e.  ( J ... K ) )
104, 8, 93syl 17 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  J  e.  ( J ... K
) )
1110, 3eleqtrrd 2174 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  J  e.  ( M ... N
) )
12 elfzuz 9585 . . . . . . 7  |-  ( J  e.  ( M ... N )  ->  J  e.  ( ZZ>= `  M )
)
13 uzss 9138 . . . . . . 7  |-  ( J  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  J )  C_  ( ZZ>=
`  M ) )
1411, 12, 133syl 17 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  J )  C_  ( ZZ>= `  M )
)
157, 14eqssd 3056 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  M )  =  ( ZZ>= `  J )
)
16 eluzel2 9123 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1716adantr 271 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  M  e.  ZZ )
18 uz11 9140 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  J
)  <->  M  =  J
) )
1917, 18syl 14 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  J
)  <->  M  =  J
) )
2015, 19mpbid 146 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  M  =  J )
21 eluzfz2 9595 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  J
)  ->  K  e.  ( J ... K ) )
224, 8, 213syl 17 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  K  e.  ( J ... K
) )
2322, 3eleqtrrd 2174 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  K  e.  ( M ... N
) )
24 elfzuz3 9586 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
25 uzss 9138 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  K ) )
2623, 24, 253syl 17 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  N )  C_  ( ZZ>= `  K )
)
27 eluzfz2 9595 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
2827adantr 271 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  N  e.  ( M ... N
) )
2928, 3eleqtrd 2173 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  N  e.  ( J ... K
) )
30 elfzuz3 9586 . . . . . . 7  |-  ( N  e.  ( J ... K )  ->  K  e.  ( ZZ>= `  N )
)
31 uzss 9138 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  N
)  ->  ( ZZ>= `  K )  C_  ( ZZ>=
`  N ) )
3229, 30, 313syl 17 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  K )  C_  ( ZZ>= `  N )
)
3326, 32eqssd 3056 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( ZZ>=
`  N )  =  ( ZZ>= `  K )
)
34 eluzelz 9127 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3534adantr 271 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  N  e.  ZZ )
36 uz11 9140 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ZZ>= `  N )  =  ( ZZ>= `  K
)  <->  N  =  K
) )
3735, 36syl 14 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  (
( ZZ>= `  N )  =  ( ZZ>= `  K
)  <->  N  =  K
) )
3833, 37mpbid 146 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  N  =  K )
3920, 38jca 301 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( M ... N )  =  ( J ... K
) )  ->  ( M  =  J  /\  N  =  K )
)
4039ex 114 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M ... N )  =  ( J ... K
)  ->  ( M  =  J  /\  N  =  K ) ) )
41 oveq12 5699 . 2  |-  ( ( M  =  J  /\  N  =  K )  ->  ( M ... N
)  =  ( J ... K ) )
4240, 41impbid1 141 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M ... N )  =  ( J ... K
)  <->  ( M  =  J  /\  N  =  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296    e. wcel 1445    C_ wss 3013   ` cfv 5049  (class class class)co 5690   ZZcz 8848   ZZ>=cuz 9118   ...cfz 9573
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-apti 7557
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-neg 7753  df-z 8849  df-uz 9119  df-fz 9574
This theorem is referenced by:  2ffzeq  9701
  Copyright terms: Public domain W3C validator