| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzopth | Unicode version | ||
| Description: A finite set of sequential integers can represent an ordered pair. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzopth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzfz1 10155 |
. . . . . . . . 9
| |
| 2 | 1 | adantr 276 |
. . . . . . . 8
|
| 3 | simpr 110 |
. . . . . . . 8
| |
| 4 | 2, 3 | eleqtrd 2284 |
. . . . . . 7
|
| 5 | elfzuz 10145 |
. . . . . . 7
| |
| 6 | uzss 9671 |
. . . . . . 7
| |
| 7 | 4, 5, 6 | 3syl 17 |
. . . . . 6
|
| 8 | elfzuz2 10153 |
. . . . . . . . 9
| |
| 9 | eluzfz1 10155 |
. . . . . . . . 9
| |
| 10 | 4, 8, 9 | 3syl 17 |
. . . . . . . 8
|
| 11 | 10, 3 | eleqtrrd 2285 |
. . . . . . 7
|
| 12 | elfzuz 10145 |
. . . . . . 7
| |
| 13 | uzss 9671 |
. . . . . . 7
| |
| 14 | 11, 12, 13 | 3syl 17 |
. . . . . 6
|
| 15 | 7, 14 | eqssd 3210 |
. . . . 5
|
| 16 | eluzel2 9655 |
. . . . . . 7
| |
| 17 | 16 | adantr 276 |
. . . . . 6
|
| 18 | uz11 9673 |
. . . . . 6
| |
| 19 | 17, 18 | syl 14 |
. . . . 5
|
| 20 | 15, 19 | mpbid 147 |
. . . 4
|
| 21 | eluzfz2 10156 |
. . . . . . . . 9
| |
| 22 | 4, 8, 21 | 3syl 17 |
. . . . . . . 8
|
| 23 | 22, 3 | eleqtrrd 2285 |
. . . . . . 7
|
| 24 | elfzuz3 10146 |
. . . . . . 7
| |
| 25 | uzss 9671 |
. . . . . . 7
| |
| 26 | 23, 24, 25 | 3syl 17 |
. . . . . 6
|
| 27 | eluzfz2 10156 |
. . . . . . . . 9
| |
| 28 | 27 | adantr 276 |
. . . . . . . 8
|
| 29 | 28, 3 | eleqtrd 2284 |
. . . . . . 7
|
| 30 | elfzuz3 10146 |
. . . . . . 7
| |
| 31 | uzss 9671 |
. . . . . . 7
| |
| 32 | 29, 30, 31 | 3syl 17 |
. . . . . 6
|
| 33 | 26, 32 | eqssd 3210 |
. . . . 5
|
| 34 | eluzelz 9659 |
. . . . . . 7
| |
| 35 | 34 | adantr 276 |
. . . . . 6
|
| 36 | uz11 9673 |
. . . . . 6
| |
| 37 | 35, 36 | syl 14 |
. . . . 5
|
| 38 | 33, 37 | mpbid 147 |
. . . 4
|
| 39 | 20, 38 | jca 306 |
. . 3
|
| 40 | 39 | ex 115 |
. 2
|
| 41 | oveq12 5955 |
. 2
| |
| 42 | 40, 41 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-apti 8042 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-neg 8248 df-z 9375 df-uz 9651 df-fz 10133 |
| This theorem is referenced by: fz0to4untppr 10248 2ffzeq 10265 gsumfzval 13256 gsumval2 13262 |
| Copyright terms: Public domain | W3C validator |