![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpidd | GIF version |
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpidd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
grpidd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
grpidd.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
grpidd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
grpidd.j | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
Ref | Expression |
---|---|
grpidd | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2177 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | eqid 2177 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | grpidd.z | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) | |
5 | grpidd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
6 | 4, 5 | eleqtrd 2256 | . 2 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
7 | 5 | eleq2d 2247 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐺))) |
8 | 7 | biimpar 297 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ 𝐵) |
9 | grpidd.p | . . . . . 6 ⊢ (𝜑 → + = (+g‘𝐺)) | |
10 | 9 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → + = (+g‘𝐺)) |
11 | 10 | oveqd 5891 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = ( 0 (+g‘𝐺)𝑥)) |
12 | grpidd.i | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
13 | 11, 12 | eqtr3d 2212 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
14 | 8, 13 | syldan 282 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
15 | 10 | oveqd 5891 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = (𝑥(+g‘𝐺) 0 )) |
16 | grpidd.j | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) | |
17 | 15, 16 | eqtr3d 2212 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
18 | 8, 17 | syldan 282 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
19 | 1, 2, 3, 6, 14, 18 | ismgmid2 12753 | 1 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ‘cfv 5216 (class class class)co 5874 Basecbs 12456 +gcplusg 12530 0gc0g 12695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-cnex 7901 ax-resscn 7902 ax-1re 7904 ax-addrcl 7907 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-iota 5178 df-fun 5218 df-fn 5219 df-fv 5224 df-riota 5830 df-ov 5877 df-inn 8918 df-ndx 12459 df-slot 12460 df-base 12462 df-0g 12697 |
This theorem is referenced by: ress0g 12798 mnd1id 12802 isgrpde 12852 |
Copyright terms: Public domain | W3C validator |