| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidd | GIF version | ||
| Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpidd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| grpidd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| grpidd.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
| grpidd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
| grpidd.j | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
| Ref | Expression |
|---|---|
| grpidd | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2196 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | eqid 2196 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | grpidd.z | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) | |
| 5 | grpidd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 6 | 4, 5 | eleqtrd 2275 | . 2 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
| 7 | 5 | eleq2d 2266 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐺))) |
| 8 | 7 | biimpar 297 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ 𝐵) |
| 9 | grpidd.p | . . . . . 6 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → + = (+g‘𝐺)) |
| 11 | 10 | oveqd 5942 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = ( 0 (+g‘𝐺)𝑥)) |
| 12 | grpidd.i | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
| 13 | 11, 12 | eqtr3d 2231 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
| 14 | 8, 13 | syldan 282 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
| 15 | 10 | oveqd 5942 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = (𝑥(+g‘𝐺) 0 )) |
| 16 | grpidd.j | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) | |
| 17 | 15, 16 | eqtr3d 2231 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 18 | 8, 17 | syldan 282 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 19 | 1, 2, 3, 6, 14, 18 | ismgmid2 13082 | 1 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 0gc0g 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-0g 12960 |
| This theorem is referenced by: ress0g 13145 imasmnd2 13154 mnd1id 13158 isgrpde 13224 |
| Copyright terms: Public domain | W3C validator |