ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidd GIF version

Theorem grpidd 13259
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpidd.b (𝜑𝐵 = (Base‘𝐺))
grpidd.p (𝜑+ = (+g𝐺))
grpidd.z (𝜑0𝐵)
grpidd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
grpidd.j ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
Assertion
Ref Expression
grpidd (𝜑0 = (0g𝐺))
Distinct variable groups:   𝑥,𝐺   𝜑,𝑥   𝑥, 0
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)

Proof of Theorem grpidd
StepHypRef Expression
1 eqid 2206 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2206 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2206 . 2 (+g𝐺) = (+g𝐺)
4 grpidd.z . . 3 (𝜑0𝐵)
5 grpidd.b . . 3 (𝜑𝐵 = (Base‘𝐺))
64, 5eleqtrd 2285 . 2 (𝜑0 ∈ (Base‘𝐺))
75eleq2d 2276 . . . 4 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐺)))
87biimpar 297 . . 3 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥𝐵)
9 grpidd.p . . . . . 6 (𝜑+ = (+g𝐺))
109adantr 276 . . . . 5 ((𝜑𝑥𝐵) → + = (+g𝐺))
1110oveqd 5968 . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = ( 0 (+g𝐺)𝑥))
12 grpidd.i . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
1311, 12eqtr3d 2241 . . 3 ((𝜑𝑥𝐵) → ( 0 (+g𝐺)𝑥) = 𝑥)
148, 13syldan 282 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → ( 0 (+g𝐺)𝑥) = 𝑥)
1510oveqd 5968 . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑥(+g𝐺) 0 ))
16 grpidd.j . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
1715, 16eqtr3d 2241 . . 3 ((𝜑𝑥𝐵) → (𝑥(+g𝐺) 0 ) = 𝑥)
188, 17syldan 282 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺) 0 ) = 𝑥)
191, 2, 3, 6, 14, 18ismgmid2 13256 1 (𝜑0 = (0g𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  0gc0g 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-riota 5906  df-ov 5954  df-inn 9044  df-ndx 12879  df-slot 12880  df-base 12882  df-0g 13134
This theorem is referenced by:  ress0g  13319  imasmnd2  13328  mnd1id  13332  isgrpde  13398
  Copyright terms: Public domain W3C validator