ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidd GIF version

Theorem grpidd 12614
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpidd.b (𝜑𝐵 = (Base‘𝐺))
grpidd.p (𝜑+ = (+g𝐺))
grpidd.z (𝜑0𝐵)
grpidd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
grpidd.j ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
Assertion
Ref Expression
grpidd (𝜑0 = (0g𝐺))
Distinct variable groups:   𝑥,𝐺   𝜑,𝑥   𝑥, 0
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)

Proof of Theorem grpidd
StepHypRef Expression
1 eqid 2165 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2165 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2165 . 2 (+g𝐺) = (+g𝐺)
4 grpidd.z . . 3 (𝜑0𝐵)
5 grpidd.b . . 3 (𝜑𝐵 = (Base‘𝐺))
64, 5eleqtrd 2245 . 2 (𝜑0 ∈ (Base‘𝐺))
75eleq2d 2236 . . . 4 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐺)))
87biimpar 295 . . 3 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥𝐵)
9 grpidd.p . . . . . 6 (𝜑+ = (+g𝐺))
109adantr 274 . . . . 5 ((𝜑𝑥𝐵) → + = (+g𝐺))
1110oveqd 5859 . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = ( 0 (+g𝐺)𝑥))
12 grpidd.i . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
1311, 12eqtr3d 2200 . . 3 ((𝜑𝑥𝐵) → ( 0 (+g𝐺)𝑥) = 𝑥)
148, 13syldan 280 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → ( 0 (+g𝐺)𝑥) = 𝑥)
1510oveqd 5859 . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑥(+g𝐺) 0 ))
16 grpidd.j . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
1715, 16eqtr3d 2200 . . 3 ((𝜑𝑥𝐵) → (𝑥(+g𝐺) 0 ) = 𝑥)
188, 17syldan 280 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺) 0 ) = 𝑥)
191, 2, 3, 6, 14, 18ismgmid2 12611 1 (𝜑0 = (0g𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cfv 5188  (class class class)co 5842  Basecbs 12394  +gcplusg 12457  0gc0g 12573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-riota 5798  df-ov 5845  df-inn 8858  df-ndx 12397  df-slot 12398  df-base 12400  df-0g 12575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator