ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ress0g Unicode version

Theorem ress0g 13390
Description:  0g is unaffected by restriction. This is a bit more generic than submnd0 13391. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Hypotheses
Ref Expression
ress0g.s  |-  S  =  ( Rs  A )
ress0g.b  |-  B  =  ( Base `  R
)
ress0g.0  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
ress0g  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  .0.  =  ( 0g `  S ) )

Proof of Theorem ress0g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ress0g.s . . . 4  |-  S  =  ( Rs  A )
21a1i 9 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  S  =  ( Rs  A ) )
3 ress0g.b . . . 4  |-  B  =  ( Base `  R
)
43a1i 9 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  B  =  ( Base `  R
) )
5 simp1 1000 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  R  e.  Mnd )
6 simp3 1002 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  A  C_  B )
72, 4, 5, 6ressbas2d 13015 . 2  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  A  =  ( Base `  S
) )
8 eqidd 2208 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  ( +g  `  R )  =  ( +g  `  R
) )
9 basfn 13005 . . . . . 6  |-  Base  Fn  _V
105elexd 2790 . . . . . 6  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  R  e.  _V )
11 funfvex 5616 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1211funfni 5395 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
139, 10, 12sylancr 414 . . . . 5  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  ( Base `  R )  e. 
_V )
143, 13eqeltrid 2294 . . . 4  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  B  e.  _V )
1514, 6ssexd 4200 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  A  e.  _V )
162, 8, 15, 5ressplusgd 13076 . 2  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  ( +g  `  R )  =  ( +g  `  S
) )
17 simp2 1001 . 2  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  .0.  e.  A )
18 simpl1 1003 . . 3  |-  ( ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  /\  x  e.  A )  ->  R  e.  Mnd )
196sselda 3201 . . 3  |-  ( ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  /\  x  e.  A )  ->  x  e.  B )
20 eqid 2207 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
21 ress0g.0 . . . 4  |-  .0.  =  ( 0g `  R )
223, 20, 21mndlid 13382 . . 3  |-  ( ( R  e.  Mnd  /\  x  e.  B )  ->  (  .0.  ( +g  `  R ) x )  =  x )
2318, 19, 22syl2anc 411 . 2  |-  ( ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  /\  x  e.  A )  ->  (  .0.  ( +g  `  R ) x )  =  x )
243, 20, 21mndrid 13383 . . 3  |-  ( ( R  e.  Mnd  /\  x  e.  B )  ->  ( x ( +g  `  R )  .0.  )  =  x )
2518, 19, 24syl2anc 411 . 2  |-  ( ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  /\  x  e.  A )  ->  ( x ( +g  `  R )  .0.  )  =  x )
267, 16, 17, 23, 25grpidd 13330 1  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  .0.  =  ( 0g `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   0gc0g 13203   Mndcmnd 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364
This theorem is referenced by:  submnd0  13391  zring0  14477
  Copyright terms: Public domain W3C validator