ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ress0g Unicode version

Theorem ress0g 12849
Description:  0g is unaffected by restriction. This is a bit more generic than submnd0 12850. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Hypotheses
Ref Expression
ress0g.s  |-  S  =  ( Rs  A )
ress0g.b  |-  B  =  ( Base `  R
)
ress0g.0  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
ress0g  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  .0.  =  ( 0g `  S ) )

Proof of Theorem ress0g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ress0g.s . . . 4  |-  S  =  ( Rs  A )
21a1i 9 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  S  =  ( Rs  A ) )
3 ress0g.b . . . 4  |-  B  =  ( Base `  R
)
43a1i 9 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  B  =  ( Base `  R
) )
5 simp1 997 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  R  e.  Mnd )
6 simp3 999 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  A  C_  B )
72, 4, 5, 6ressbas2d 12530 . 2  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  A  =  ( Base `  S
) )
8 eqidd 2178 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  ( +g  `  R )  =  ( +g  `  R
) )
9 basfn 12522 . . . . . 6  |-  Base  Fn  _V
105elexd 2752 . . . . . 6  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  R  e.  _V )
11 funfvex 5534 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1211funfni 5318 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
139, 10, 12sylancr 414 . . . . 5  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  ( Base `  R )  e. 
_V )
143, 13eqeltrid 2264 . . . 4  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  B  e.  _V )
1514, 6ssexd 4145 . . 3  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  A  e.  _V )
162, 8, 15, 5ressplusgd 12589 . 2  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  ( +g  `  R )  =  ( +g  `  S
) )
17 simp2 998 . 2  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  .0.  e.  A )
18 simpl1 1000 . . 3  |-  ( ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  /\  x  e.  A )  ->  R  e.  Mnd )
196sselda 3157 . . 3  |-  ( ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  /\  x  e.  A )  ->  x  e.  B )
20 eqid 2177 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
21 ress0g.0 . . . 4  |-  .0.  =  ( 0g `  R )
223, 20, 21mndlid 12841 . . 3  |-  ( ( R  e.  Mnd  /\  x  e.  B )  ->  (  .0.  ( +g  `  R ) x )  =  x )
2318, 19, 22syl2anc 411 . 2  |-  ( ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  /\  x  e.  A )  ->  (  .0.  ( +g  `  R ) x )  =  x )
243, 20, 21mndrid 12842 . . 3  |-  ( ( R  e.  Mnd  /\  x  e.  B )  ->  ( x ( +g  `  R )  .0.  )  =  x )
2518, 19, 24syl2anc 411 . 2  |-  ( ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  /\  x  e.  A )  ->  ( x ( +g  `  R )  .0.  )  =  x )
267, 16, 17, 23, 25grpidd 12807 1  |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  .0.  =  ( 0g `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131    Fn wfn 5213   ` cfv 5218  (class class class)co 5877   Basecbs 12464   ↾s cress 12465   +g cplusg 12538   0gc0g 12710   Mndcmnd 12822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823
This theorem is referenced by:  submnd0  12850  zring0  13575
  Copyright terms: Public domain W3C validator