ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd1id Unicode version

Theorem mnd1id 12908
Description: The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.)
Hypothesis
Ref Expression
mnd1.m  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
Assertion
Ref Expression
mnd1id  |-  ( I  e.  V  ->  ( 0g `  M )  =  I )

Proof of Theorem mnd1id
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 snexg 4202 . . . 4  |-  ( I  e.  V  ->  { I }  e.  _V )
2 opexg 4246 . . . . . . 7  |-  ( ( I  e.  V  /\  I  e.  V )  -> 
<. I ,  I >.  e. 
_V )
32anidms 397 . . . . . 6  |-  ( I  e.  V  ->  <. I ,  I >.  e.  _V )
4 opexg 4246 . . . . . 6  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
53, 4mpancom 422 . . . . 5  |-  ( I  e.  V  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
6 snexg 4202 . . . . 5  |-  ( <. <. I ,  I >. ,  I >.  e.  _V  ->  { <. <. I ,  I >. ,  I >. }  e.  _V )
75, 6syl 14 . . . 4  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  e.  _V )
8 mnd1.m . . . . 5  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
98grpbaseg 12638 . . . 4  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { I }  =  ( Base `  M )
)
101, 7, 9syl2anc 411 . . 3  |-  ( I  e.  V  ->  { I }  =  ( Base `  M ) )
118grpplusgg 12639 . . . 4  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { <. <. I ,  I >. ,  I >. }  =  ( +g  `  M ) )
121, 7, 11syl2anc 411 . . 3  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  =  ( +g  `  M ) )
13 snidg 3636 . . 3  |-  ( I  e.  V  ->  I  e.  { I } )
14 velsn 3624 . . . . 5  |-  ( a  e.  { I }  <->  a  =  I )
15 df-ov 5899 . . . . . . 7  |-  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( {
<. <. I ,  I >. ,  I >. } `  <. I ,  I >. )
16 fvsng 5733 . . . . . . . 8  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
173, 16mpancom 422 . . . . . . 7  |-  ( I  e.  V  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
1815, 17eqtrid 2234 . . . . . 6  |-  ( I  e.  V  ->  (
I { <. <. I ,  I >. ,  I >. } I )  =  I )
19 oveq2 5904 . . . . . . 7  |-  ( a  =  I  ->  (
I { <. <. I ,  I >. ,  I >. } a )  =  ( I { <. <. I ,  I >. ,  I >. } I ) )
20 id 19 . . . . . . 7  |-  ( a  =  I  ->  a  =  I )
2119, 20eqeq12d 2204 . . . . . 6  |-  ( a  =  I  ->  (
( I { <. <.
I ,  I >. ,  I >. } a )  =  a  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) )
2218, 21syl5ibrcom 157 . . . . 5  |-  ( I  e.  V  ->  (
a  =  I  -> 
( I { <. <.
I ,  I >. ,  I >. } a )  =  a ) )
2314, 22biimtrid 152 . . . 4  |-  ( I  e.  V  ->  (
a  e.  { I }  ->  ( I { <. <. I ,  I >. ,  I >. } a )  =  a ) )
2423imp 124 . . 3  |-  ( ( I  e.  V  /\  a  e.  { I } )  ->  (
I { <. <. I ,  I >. ,  I >. } a )  =  a )
25 oveq1 5903 . . . . . . 7  |-  ( a  =  I  ->  (
a { <. <. I ,  I >. ,  I >. } I )  =  ( I { <. <. I ,  I >. ,  I >. } I ) )
2625, 20eqeq12d 2204 . . . . . 6  |-  ( a  =  I  ->  (
( a { <. <.
I ,  I >. ,  I >. } I )  =  a  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) )
2718, 26syl5ibrcom 157 . . . . 5  |-  ( I  e.  V  ->  (
a  =  I  -> 
( a { <. <.
I ,  I >. ,  I >. } I )  =  a ) )
2814, 27biimtrid 152 . . . 4  |-  ( I  e.  V  ->  (
a  e.  { I }  ->  ( a {
<. <. I ,  I >. ,  I >. } I
)  =  a ) )
2928imp 124 . . 3  |-  ( ( I  e.  V  /\  a  e.  { I } )  ->  (
a { <. <. I ,  I >. ,  I >. } I )  =  a )
3010, 12, 13, 24, 29grpidd 12859 . 2  |-  ( I  e.  V  ->  I  =  ( 0g `  M ) )
3130eqcomd 2195 1  |-  ( I  e.  V  ->  ( 0g `  M )  =  I )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   _Vcvv 2752   {csn 3607   {cpr 3608   <.cop 3610   ` cfv 5235  (class class class)co 5896   ndxcnx 12509   Basecbs 12512   +g cplusg 12589   0gc0g 12761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-pre-ltirr 7953  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-riota 5852  df-ov 5899  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-inn 8950  df-2 9008  df-ndx 12515  df-slot 12516  df-base 12518  df-plusg 12602  df-0g 12763
This theorem is referenced by:  grp1  13050
  Copyright terms: Public domain W3C validator