Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mnd1id | Unicode version |
Description: The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
mnd1.m |
Ref | Expression |
---|---|
mnd1id |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snexg 4179 | . . . 4 | |
2 | opexg 4222 | . . . . . . 7 | |
3 | 2 | anidms 397 | . . . . . 6 |
4 | opexg 4222 | . . . . . 6 | |
5 | 3, 4 | mpancom 422 | . . . . 5 |
6 | snexg 4179 | . . . . 5 | |
7 | 5, 6 | syl 14 | . . . 4 |
8 | mnd1.m | . . . . 5 | |
9 | 8 | grpbaseg 12537 | . . . 4 |
10 | 1, 7, 9 | syl2anc 411 | . . 3 |
11 | 8 | grpplusgg 12538 | . . . 4 |
12 | 1, 7, 11 | syl2anc 411 | . . 3 |
13 | snidg 3618 | . . 3 | |
14 | velsn 3606 | . . . . 5 | |
15 | df-ov 5868 | . . . . . . 7 | |
16 | fvsng 5704 | . . . . . . . 8 | |
17 | 3, 16 | mpancom 422 | . . . . . . 7 |
18 | 15, 17 | eqtrid 2220 | . . . . . 6 |
19 | oveq2 5873 | . . . . . . 7 | |
20 | id 19 | . . . . . . 7 | |
21 | 19, 20 | eqeq12d 2190 | . . . . . 6 |
22 | 18, 21 | syl5ibrcom 157 | . . . . 5 |
23 | 14, 22 | biimtrid 152 | . . . 4 |
24 | 23 | imp 124 | . . 3 |
25 | oveq1 5872 | . . . . . . 7 | |
26 | 25, 20 | eqeq12d 2190 | . . . . . 6 |
27 | 18, 26 | syl5ibrcom 157 | . . . . 5 |
28 | 14, 27 | biimtrid 152 | . . . 4 |
29 | 28 | imp 124 | . . 3 |
30 | 10, 12, 13, 24, 29 | grpidd 12666 | . 2 |
31 | 30 | eqcomd 2181 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 cvv 2735 csn 3589 cpr 3590 cop 3592 cfv 5208 (class class class)co 5865 cnx 12424 cbs 12427 cplusg 12491 c0g 12625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-0g 12627 |
This theorem is referenced by: grp1 12835 |
Copyright terms: Public domain | W3C validator |