| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mnd1id | Unicode version | ||
| Description: The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| mnd1.m | 
 | 
| Ref | Expression | 
|---|---|
| mnd1id | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snexg 4217 | 
. . . 4
 | |
| 2 | opexg 4261 | 
. . . . . . 7
 | |
| 3 | 2 | anidms 397 | 
. . . . . 6
 | 
| 4 | opexg 4261 | 
. . . . . 6
 | |
| 5 | 3, 4 | mpancom 422 | 
. . . . 5
 | 
| 6 | snexg 4217 | 
. . . . 5
 | |
| 7 | 5, 6 | syl 14 | 
. . . 4
 | 
| 8 | mnd1.m | 
. . . . 5
 | |
| 9 | 8 | grpbaseg 12804 | 
. . . 4
 | 
| 10 | 1, 7, 9 | syl2anc 411 | 
. . 3
 | 
| 11 | 8 | grpplusgg 12805 | 
. . . 4
 | 
| 12 | 1, 7, 11 | syl2anc 411 | 
. . 3
 | 
| 13 | snidg 3651 | 
. . 3
 | |
| 14 | velsn 3639 | 
. . . . 5
 | |
| 15 | df-ov 5925 | 
. . . . . . 7
 | |
| 16 | fvsng 5758 | 
. . . . . . . 8
 | |
| 17 | 3, 16 | mpancom 422 | 
. . . . . . 7
 | 
| 18 | 15, 17 | eqtrid 2241 | 
. . . . . 6
 | 
| 19 | oveq2 5930 | 
. . . . . . 7
 | |
| 20 | id 19 | 
. . . . . . 7
 | |
| 21 | 19, 20 | eqeq12d 2211 | 
. . . . . 6
 | 
| 22 | 18, 21 | syl5ibrcom 157 | 
. . . . 5
 | 
| 23 | 14, 22 | biimtrid 152 | 
. . . 4
 | 
| 24 | 23 | imp 124 | 
. . 3
 | 
| 25 | oveq1 5929 | 
. . . . . . 7
 | |
| 26 | 25, 20 | eqeq12d 2211 | 
. . . . . 6
 | 
| 27 | 18, 26 | syl5ibrcom 157 | 
. . . . 5
 | 
| 28 | 14, 27 | biimtrid 152 | 
. . . 4
 | 
| 29 | 28 | imp 124 | 
. . 3
 | 
| 30 | 10, 12, 13, 24, 29 | grpidd 13026 | 
. 2
 | 
| 31 | 30 | eqcomd 2202 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 | 
| This theorem is referenced by: grp1 13238 | 
| Copyright terms: Public domain | W3C validator |