ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidd2 Unicode version

Theorem grpidd2 13448
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 13430. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
grpidd2.b  |-  ( ph  ->  B  =  ( Base `  G ) )
grpidd2.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
grpidd2.z  |-  ( ph  ->  .0.  e.  B )
grpidd2.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
grpidd2.j  |-  ( ph  ->  G  e.  Grp )
Assertion
Ref Expression
grpidd2  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Distinct variable groups:    x, B    x,  .+    ph, x    x,  .0.
Allowed substitution hint:    G( x)

Proof of Theorem grpidd2
StepHypRef Expression
1 grpidd2.p . . . . 5  |-  ( ph  ->  .+  =  ( +g  `  G ) )
21oveqd 5974 . . . 4  |-  ( ph  ->  (  .0.  .+  .0.  )  =  (  .0.  ( +g  `  G )  .0.  ) )
3 oveq2 5965 . . . . . 6  |-  ( x  =  .0.  ->  (  .0.  .+  x )  =  (  .0.  .+  .0.  ) )
4 id 19 . . . . . 6  |-  ( x  =  .0.  ->  x  =  .0.  )
53, 4eqeq12d 2221 . . . . 5  |-  ( x  =  .0.  ->  (
(  .0.  .+  x
)  =  x  <->  (  .0.  .+  .0.  )  =  .0.  ) )
6 grpidd2.i . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
76ralrimiva 2580 . . . . 5  |-  ( ph  ->  A. x  e.  B  (  .0.  .+  x )  =  x )
8 grpidd2.z . . . . 5  |-  ( ph  ->  .0.  e.  B )
95, 7, 8rspcdva 2886 . . . 4  |-  ( ph  ->  (  .0.  .+  .0.  )  =  .0.  )
102, 9eqtr3d 2241 . . 3  |-  ( ph  ->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  )
11 grpidd2.j . . . 4  |-  ( ph  ->  G  e.  Grp )
12 grpidd2.b . . . . 5  |-  ( ph  ->  B  =  ( Base `  G ) )
138, 12eleqtrd 2285 . . . 4  |-  ( ph  ->  .0.  e.  ( Base `  G ) )
14 eqid 2206 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
15 eqid 2206 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
16 eqid 2206 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
1714, 15, 16grpid 13446 . . . 4  |-  ( ( G  e.  Grp  /\  .0.  e.  ( Base `  G
) )  ->  (
(  .0.  ( +g  `  G )  .0.  )  =  .0.  <->  ( 0g `  G )  =  .0.  ) )
1811, 13, 17syl2anc 411 . . 3  |-  ( ph  ->  ( (  .0.  ( +g  `  G )  .0.  )  =  .0.  <->  ( 0g `  G )  =  .0.  ) )
1910, 18mpbid 147 . 2  |-  ( ph  ->  ( 0g `  G
)  =  .0.  )
2019eqcomd 2212 1  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   0gc0g 13163   Grpcgrp 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410
This theorem is referenced by:  imasgrp2  13521
  Copyright terms: Public domain W3C validator