| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidd2 | Unicode version | ||
| Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 13297. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| grpidd2.b |
|
| grpidd2.p |
|
| grpidd2.z |
|
| grpidd2.i |
|
| grpidd2.j |
|
| Ref | Expression |
|---|---|
| grpidd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidd2.p |
. . . . 5
| |
| 2 | 1 | oveqd 5960 |
. . . 4
|
| 3 | oveq2 5951 |
. . . . . 6
| |
| 4 | id 19 |
. . . . . 6
| |
| 5 | 3, 4 | eqeq12d 2219 |
. . . . 5
|
| 6 | grpidd2.i |
. . . . . 6
| |
| 7 | 6 | ralrimiva 2578 |
. . . . 5
|
| 8 | grpidd2.z |
. . . . 5
| |
| 9 | 5, 7, 8 | rspcdva 2881 |
. . . 4
|
| 10 | 2, 9 | eqtr3d 2239 |
. . 3
|
| 11 | grpidd2.j |
. . . 4
| |
| 12 | grpidd2.b |
. . . . 5
| |
| 13 | 8, 12 | eleqtrd 2283 |
. . . 4
|
| 14 | eqid 2204 |
. . . . 5
| |
| 15 | eqid 2204 |
. . . . 5
| |
| 16 | eqid 2204 |
. . . . 5
| |
| 17 | 14, 15, 16 | grpid 13313 |
. . . 4
|
| 18 | 11, 13, 17 | syl2anc 411 |
. . 3
|
| 19 | 10, 18 | mpbid 147 |
. 2
|
| 20 | 19 | eqcomd 2210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 |
| This theorem is referenced by: imasgrp2 13388 |
| Copyright terms: Public domain | W3C validator |