ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidd2 Unicode version

Theorem grpidd2 13315
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 13297. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
grpidd2.b  |-  ( ph  ->  B  =  ( Base `  G ) )
grpidd2.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
grpidd2.z  |-  ( ph  ->  .0.  e.  B )
grpidd2.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
grpidd2.j  |-  ( ph  ->  G  e.  Grp )
Assertion
Ref Expression
grpidd2  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Distinct variable groups:    x, B    x,  .+    ph, x    x,  .0.
Allowed substitution hint:    G( x)

Proof of Theorem grpidd2
StepHypRef Expression
1 grpidd2.p . . . . 5  |-  ( ph  ->  .+  =  ( +g  `  G ) )
21oveqd 5960 . . . 4  |-  ( ph  ->  (  .0.  .+  .0.  )  =  (  .0.  ( +g  `  G )  .0.  ) )
3 oveq2 5951 . . . . . 6  |-  ( x  =  .0.  ->  (  .0.  .+  x )  =  (  .0.  .+  .0.  ) )
4 id 19 . . . . . 6  |-  ( x  =  .0.  ->  x  =  .0.  )
53, 4eqeq12d 2219 . . . . 5  |-  ( x  =  .0.  ->  (
(  .0.  .+  x
)  =  x  <->  (  .0.  .+  .0.  )  =  .0.  ) )
6 grpidd2.i . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
76ralrimiva 2578 . . . . 5  |-  ( ph  ->  A. x  e.  B  (  .0.  .+  x )  =  x )
8 grpidd2.z . . . . 5  |-  ( ph  ->  .0.  e.  B )
95, 7, 8rspcdva 2881 . . . 4  |-  ( ph  ->  (  .0.  .+  .0.  )  =  .0.  )
102, 9eqtr3d 2239 . . 3  |-  ( ph  ->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  )
11 grpidd2.j . . . 4  |-  ( ph  ->  G  e.  Grp )
12 grpidd2.b . . . . 5  |-  ( ph  ->  B  =  ( Base `  G ) )
138, 12eleqtrd 2283 . . . 4  |-  ( ph  ->  .0.  e.  ( Base `  G ) )
14 eqid 2204 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
15 eqid 2204 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
16 eqid 2204 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
1714, 15, 16grpid 13313 . . . 4  |-  ( ( G  e.  Grp  /\  .0.  e.  ( Base `  G
) )  ->  (
(  .0.  ( +g  `  G )  .0.  )  =  .0.  <->  ( 0g `  G )  =  .0.  ) )
1811, 13, 17syl2anc 411 . . 3  |-  ( ph  ->  ( (  .0.  ( +g  `  G )  .0.  )  =  .0.  <->  ( 0g `  G )  =  .0.  ) )
1910, 18mpbid 147 . 2  |-  ( ph  ->  ( 0g `  G
)  =  .0.  )
2019eqcomd 2210 1  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   0gc0g 13030   Grpcgrp 13274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277
This theorem is referenced by:  imasgrp2  13388
  Copyright terms: Public domain W3C validator