ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidd2 Unicode version

Theorem grpidd2 12919
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 12904. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
grpidd2.b  |-  ( ph  ->  B  =  ( Base `  G ) )
grpidd2.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
grpidd2.z  |-  ( ph  ->  .0.  e.  B )
grpidd2.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
grpidd2.j  |-  ( ph  ->  G  e.  Grp )
Assertion
Ref Expression
grpidd2  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Distinct variable groups:    x, B    x,  .+    ph, x    x,  .0.
Allowed substitution hint:    G( x)

Proof of Theorem grpidd2
StepHypRef Expression
1 grpidd2.p . . . . 5  |-  ( ph  ->  .+  =  ( +g  `  G ) )
21oveqd 5894 . . . 4  |-  ( ph  ->  (  .0.  .+  .0.  )  =  (  .0.  ( +g  `  G )  .0.  ) )
3 oveq2 5885 . . . . . 6  |-  ( x  =  .0.  ->  (  .0.  .+  x )  =  (  .0.  .+  .0.  ) )
4 id 19 . . . . . 6  |-  ( x  =  .0.  ->  x  =  .0.  )
53, 4eqeq12d 2192 . . . . 5  |-  ( x  =  .0.  ->  (
(  .0.  .+  x
)  =  x  <->  (  .0.  .+  .0.  )  =  .0.  ) )
6 grpidd2.i . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
76ralrimiva 2550 . . . . 5  |-  ( ph  ->  A. x  e.  B  (  .0.  .+  x )  =  x )
8 grpidd2.z . . . . 5  |-  ( ph  ->  .0.  e.  B )
95, 7, 8rspcdva 2848 . . . 4  |-  ( ph  ->  (  .0.  .+  .0.  )  =  .0.  )
102, 9eqtr3d 2212 . . 3  |-  ( ph  ->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  )
11 grpidd2.j . . . 4  |-  ( ph  ->  G  e.  Grp )
12 grpidd2.b . . . . 5  |-  ( ph  ->  B  =  ( Base `  G ) )
138, 12eleqtrd 2256 . . . 4  |-  ( ph  ->  .0.  e.  ( Base `  G ) )
14 eqid 2177 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
15 eqid 2177 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
16 eqid 2177 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
1714, 15, 16grpid 12917 . . . 4  |-  ( ( G  e.  Grp  /\  .0.  e.  ( Base `  G
) )  ->  (
(  .0.  ( +g  `  G )  .0.  )  =  .0.  <->  ( 0g `  G )  =  .0.  ) )
1811, 13, 17syl2anc 411 . . 3  |-  ( ph  ->  ( (  .0.  ( +g  `  G )  .0.  )  =  .0.  <->  ( 0g `  G )  =  .0.  ) )
1910, 18mpbid 147 . 2  |-  ( ph  ->  ( 0g `  G
)  =  .0.  )
2019eqcomd 2183 1  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   0gc0g 12710   Grpcgrp 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator