ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidd2 Unicode version

Theorem grpidd2 13113
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 13095. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
grpidd2.b  |-  ( ph  ->  B  =  ( Base `  G ) )
grpidd2.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
grpidd2.z  |-  ( ph  ->  .0.  e.  B )
grpidd2.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
grpidd2.j  |-  ( ph  ->  G  e.  Grp )
Assertion
Ref Expression
grpidd2  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Distinct variable groups:    x, B    x,  .+    ph, x    x,  .0.
Allowed substitution hint:    G( x)

Proof of Theorem grpidd2
StepHypRef Expression
1 grpidd2.p . . . . 5  |-  ( ph  ->  .+  =  ( +g  `  G ) )
21oveqd 5935 . . . 4  |-  ( ph  ->  (  .0.  .+  .0.  )  =  (  .0.  ( +g  `  G )  .0.  ) )
3 oveq2 5926 . . . . . 6  |-  ( x  =  .0.  ->  (  .0.  .+  x )  =  (  .0.  .+  .0.  ) )
4 id 19 . . . . . 6  |-  ( x  =  .0.  ->  x  =  .0.  )
53, 4eqeq12d 2208 . . . . 5  |-  ( x  =  .0.  ->  (
(  .0.  .+  x
)  =  x  <->  (  .0.  .+  .0.  )  =  .0.  ) )
6 grpidd2.i . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
76ralrimiva 2567 . . . . 5  |-  ( ph  ->  A. x  e.  B  (  .0.  .+  x )  =  x )
8 grpidd2.z . . . . 5  |-  ( ph  ->  .0.  e.  B )
95, 7, 8rspcdva 2869 . . . 4  |-  ( ph  ->  (  .0.  .+  .0.  )  =  .0.  )
102, 9eqtr3d 2228 . . 3  |-  ( ph  ->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  )
11 grpidd2.j . . . 4  |-  ( ph  ->  G  e.  Grp )
12 grpidd2.b . . . . 5  |-  ( ph  ->  B  =  ( Base `  G ) )
138, 12eleqtrd 2272 . . . 4  |-  ( ph  ->  .0.  e.  ( Base `  G ) )
14 eqid 2193 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
15 eqid 2193 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
16 eqid 2193 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
1714, 15, 16grpid 13111 . . . 4  |-  ( ( G  e.  Grp  /\  .0.  e.  ( Base `  G
) )  ->  (
(  .0.  ( +g  `  G )  .0.  )  =  .0.  <->  ( 0g `  G )  =  .0.  ) )
1811, 13, 17syl2anc 411 . . 3  |-  ( ph  ->  ( (  .0.  ( +g  `  G )  .0.  )  =  .0.  <->  ( 0g `  G )  =  .0.  ) )
1910, 18mpbid 147 . 2  |-  ( ph  ->  ( 0g `  G
)  =  .0.  )
2019eqcomd 2199 1  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Grpcgrp 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075
This theorem is referenced by:  imasgrp2  13180
  Copyright terms: Public domain W3C validator