![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpidd2 | GIF version |
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 13095. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
grpidd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
grpidd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
grpidd2.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
grpidd2.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
grpidd2.j | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpidd2 | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidd2.p | . . . . 5 ⊢ (𝜑 → + = (+g‘𝐺)) | |
2 | 1 | oveqd 5935 | . . . 4 ⊢ (𝜑 → ( 0 + 0 ) = ( 0 (+g‘𝐺) 0 )) |
3 | oveq2 5926 | . . . . . 6 ⊢ (𝑥 = 0 → ( 0 + 𝑥) = ( 0 + 0 )) | |
4 | id 19 | . . . . . 6 ⊢ (𝑥 = 0 → 𝑥 = 0 ) | |
5 | 3, 4 | eqeq12d 2208 | . . . . 5 ⊢ (𝑥 = 0 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 0 ) = 0 )) |
6 | grpidd2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
7 | 6 | ralrimiva 2567 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( 0 + 𝑥) = 𝑥) |
8 | grpidd2.z | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝐵) | |
9 | 5, 7, 8 | rspcdva 2869 | . . . 4 ⊢ (𝜑 → ( 0 + 0 ) = 0 ) |
10 | 2, 9 | eqtr3d 2228 | . . 3 ⊢ (𝜑 → ( 0 (+g‘𝐺) 0 ) = 0 ) |
11 | grpidd2.j | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
12 | grpidd2.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
13 | 8, 12 | eleqtrd 2272 | . . . 4 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
14 | eqid 2193 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
15 | eqid 2193 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | eqid 2193 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
17 | 14, 15, 16 | grpid 13111 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → (( 0 (+g‘𝐺) 0 ) = 0 ↔ (0g‘𝐺) = 0 )) |
18 | 11, 13, 17 | syl2anc 411 | . . 3 ⊢ (𝜑 → (( 0 (+g‘𝐺) 0 ) = 0 ↔ (0g‘𝐺) = 0 )) |
19 | 10, 18 | mpbid 147 | . 2 ⊢ (𝜑 → (0g‘𝐺) = 0 ) |
20 | 19 | eqcomd 2199 | 1 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 0gc0g 12867 Grpcgrp 13072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 |
This theorem is referenced by: imasgrp2 13180 |
Copyright terms: Public domain | W3C validator |