ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpid2 Unicode version

Theorem isgrpid2 13172
Description: Properties showing that an element  Z is the identity element of a group. (Contributed by NM, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinveu.b  |-  B  =  ( Base `  G
)
grpinveu.p  |-  .+  =  ( +g  `  G )
grpinveu.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
isgrpid2  |-  ( G  e.  Grp  ->  (
( Z  e.  B  /\  ( Z  .+  Z
)  =  Z )  <-> 
.0.  =  Z ) )

Proof of Theorem isgrpid2
StepHypRef Expression
1 grpinveu.b . . . . 5  |-  B  =  ( Base `  G
)
2 grpinveu.p . . . . 5  |-  .+  =  ( +g  `  G )
3 grpinveu.o . . . . 5  |-  .0.  =  ( 0g `  G )
41, 2, 3grpid 13171 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( Z  .+  Z )  =  Z  <-> 
.0.  =  Z ) )
54biimpd 144 . . 3  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( Z  .+  Z )  =  Z  ->  .0.  =  Z
) )
65expimpd 363 . 2  |-  ( G  e.  Grp  ->  (
( Z  e.  B  /\  ( Z  .+  Z
)  =  Z )  ->  .0.  =  Z
) )
71, 3grpidcl 13161 . . . 4  |-  ( G  e.  Grp  ->  .0.  e.  B )
81, 2, 3grplid 13163 . . . . 5  |-  ( ( G  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  .+  .0.  )  =  .0.  )
97, 8mpdan 421 . . . 4  |-  ( G  e.  Grp  ->  (  .0.  .+  .0.  )  =  .0.  )
107, 9jca 306 . . 3  |-  ( G  e.  Grp  ->  (  .0.  e.  B  /\  (  .0.  .+  .0.  )  =  .0.  ) )
11 eleq1 2259 . . . 4  |-  (  .0.  =  Z  ->  (  .0.  e.  B  <->  Z  e.  B ) )
12 id 19 . . . . . 6  |-  (  .0.  =  Z  ->  .0.  =  Z )
1312, 12oveq12d 5940 . . . . 5  |-  (  .0.  =  Z  ->  (  .0.  .+  .0.  )  =  ( Z  .+  Z
) )
1413, 12eqeq12d 2211 . . . 4  |-  (  .0.  =  Z  ->  (
(  .0.  .+  .0.  )  =  .0.  <->  ( Z  .+  Z )  =  Z ) )
1511, 14anbi12d 473 . . 3  |-  (  .0.  =  Z  ->  (
(  .0.  e.  B  /\  (  .0.  .+  .0.  )  =  .0.  )  <->  ( Z  e.  B  /\  ( Z  .+  Z )  =  Z ) ) )
1610, 15syl5ibcom 155 . 2  |-  ( G  e.  Grp  ->  (  .0.  =  Z  ->  ( Z  e.  B  /\  ( Z  .+  Z )  =  Z ) ) )
176, 16impbid 129 1  |-  ( G  e.  Grp  ->  (
( Z  e.  B  /\  ( Z  .+  Z
)  =  Z )  <-> 
.0.  =  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator