ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidssd Unicode version

Theorem grpidssd 13523
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidssd.m  |-  ( ph  ->  M  e.  Grp )
grpidssd.s  |-  ( ph  ->  S  e.  Grp )
grpidssd.b  |-  B  =  ( Base `  S
)
grpidssd.c  |-  ( ph  ->  B  C_  ( Base `  M ) )
grpidssd.o  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  =  ( x ( +g  `  S ) y ) )
Assertion
Ref Expression
grpidssd  |-  ( ph  ->  ( 0g `  M
)  =  ( 0g
`  S ) )
Distinct variable groups:    x, B, y   
x, M, y    x, S, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem grpidssd
StepHypRef Expression
1 grpidssd.s . . . . . 6  |-  ( ph  ->  S  e.  Grp )
2 grpidssd.b . . . . . . 7  |-  B  =  ( Base `  S
)
3 eqid 2207 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
42, 3grpidcl 13476 . . . . . 6  |-  ( S  e.  Grp  ->  ( 0g `  S )  e.  B )
51, 4syl 14 . . . . 5  |-  ( ph  ->  ( 0g `  S
)  e.  B )
6 grpidssd.o . . . . 5  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  =  ( x ( +g  `  S ) y ) )
7 oveq1 5974 . . . . . . 7  |-  ( x  =  ( 0g `  S )  ->  (
x ( +g  `  M
) y )  =  ( ( 0g `  S ) ( +g  `  M ) y ) )
8 oveq1 5974 . . . . . . 7  |-  ( x  =  ( 0g `  S )  ->  (
x ( +g  `  S
) y )  =  ( ( 0g `  S ) ( +g  `  S ) y ) )
97, 8eqeq12d 2222 . . . . . 6  |-  ( x  =  ( 0g `  S )  ->  (
( x ( +g  `  M ) y )  =  ( x ( +g  `  S ) y )  <->  ( ( 0g `  S ) ( +g  `  M ) y )  =  ( ( 0g `  S
) ( +g  `  S
) y ) ) )
10 oveq2 5975 . . . . . . 7  |-  ( y  =  ( 0g `  S )  ->  (
( 0g `  S
) ( +g  `  M
) y )  =  ( ( 0g `  S ) ( +g  `  M ) ( 0g
`  S ) ) )
11 oveq2 5975 . . . . . . 7  |-  ( y  =  ( 0g `  S )  ->  (
( 0g `  S
) ( +g  `  S
) y )  =  ( ( 0g `  S ) ( +g  `  S ) ( 0g
`  S ) ) )
1210, 11eqeq12d 2222 . . . . . 6  |-  ( y  =  ( 0g `  S )  ->  (
( ( 0g `  S ) ( +g  `  M ) y )  =  ( ( 0g
`  S ) ( +g  `  S ) y )  <->  ( ( 0g `  S ) ( +g  `  M ) ( 0g `  S
) )  =  ( ( 0g `  S
) ( +g  `  S
) ( 0g `  S ) ) ) )
139, 12rspc2va 2898 . . . . 5  |-  ( ( ( ( 0g `  S )  e.  B  /\  ( 0g `  S
)  e.  B )  /\  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  =  ( x ( +g  `  S
) y ) )  ->  ( ( 0g
`  S ) ( +g  `  M ) ( 0g `  S
) )  =  ( ( 0g `  S
) ( +g  `  S
) ( 0g `  S ) ) )
145, 5, 6, 13syl21anc 1249 . . . 4  |-  ( ph  ->  ( ( 0g `  S ) ( +g  `  M ) ( 0g
`  S ) )  =  ( ( 0g
`  S ) ( +g  `  S ) ( 0g `  S
) ) )
15 eqid 2207 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
162, 15, 3grplid 13478 . . . . 5  |-  ( ( S  e.  Grp  /\  ( 0g `  S )  e.  B )  -> 
( ( 0g `  S ) ( +g  `  S ) ( 0g
`  S ) )  =  ( 0g `  S ) )
171, 4, 16syl2anc2 412 . . . 4  |-  ( ph  ->  ( ( 0g `  S ) ( +g  `  S ) ( 0g
`  S ) )  =  ( 0g `  S ) )
1814, 17eqtrd 2240 . . 3  |-  ( ph  ->  ( ( 0g `  S ) ( +g  `  M ) ( 0g
`  S ) )  =  ( 0g `  S ) )
19 grpidssd.m . . . 4  |-  ( ph  ->  M  e.  Grp )
20 grpidssd.c . . . . 5  |-  ( ph  ->  B  C_  ( Base `  M ) )
2120, 5sseldd 3202 . . . 4  |-  ( ph  ->  ( 0g `  S
)  e.  ( Base `  M ) )
22 eqid 2207 . . . . 5  |-  ( Base `  M )  =  (
Base `  M )
23 eqid 2207 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
24 eqid 2207 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
2522, 23, 24grpidlcan 13513 . . . 4  |-  ( ( M  e.  Grp  /\  ( 0g `  S )  e.  ( Base `  M
)  /\  ( 0g `  S )  e.  (
Base `  M )
)  ->  ( (
( 0g `  S
) ( +g  `  M
) ( 0g `  S ) )  =  ( 0g `  S
)  <->  ( 0g `  S )  =  ( 0g `  M ) ) )
2619, 21, 21, 25syl3anc 1250 . . 3  |-  ( ph  ->  ( ( ( 0g
`  S ) ( +g  `  M ) ( 0g `  S
) )  =  ( 0g `  S )  <-> 
( 0g `  S
)  =  ( 0g
`  M ) ) )
2718, 26mpbid 147 . 2  |-  ( ph  ->  ( 0g `  S
)  =  ( 0g
`  M ) )
2827eqcomd 2213 1  |-  ( ph  ->  ( 0g `  M
)  =  ( 0g
`  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486    C_ wss 3174   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Grpcgrp 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450
This theorem is referenced by:  grpinvssd  13524
  Copyright terms: Public domain W3C validator