Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpidssd | Unicode version |
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.) |
Ref | Expression |
---|---|
grpidssd.m | |
grpidssd.s | |
grpidssd.b | |
grpidssd.c | |
grpidssd.o |
Ref | Expression |
---|---|
grpidssd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidssd.s | . . . . . 6 | |
2 | grpidssd.b | . . . . . . 7 | |
3 | eqid 2173 | . . . . . . 7 | |
4 | 2, 3 | grpidcl 12761 | . . . . . 6 |
5 | 1, 4 | syl 14 | . . . . 5 |
6 | grpidssd.o | . . . . 5 | |
7 | oveq1 5869 | . . . . . . 7 | |
8 | oveq1 5869 | . . . . . . 7 | |
9 | 7, 8 | eqeq12d 2188 | . . . . . 6 |
10 | oveq2 5870 | . . . . . . 7 | |
11 | oveq2 5870 | . . . . . . 7 | |
12 | 10, 11 | eqeq12d 2188 | . . . . . 6 |
13 | 9, 12 | rspc2va 2851 | . . . . 5 |
14 | 5, 5, 6, 13 | syl21anc 1235 | . . . 4 |
15 | eqid 2173 | . . . . . 6 | |
16 | 2, 15, 3 | grplid 12763 | . . . . 5 |
17 | 1, 4, 16 | syl2anc2 412 | . . . 4 |
18 | 14, 17 | eqtrd 2206 | . . 3 |
19 | grpidssd.m | . . . 4 | |
20 | grpidssd.c | . . . . 5 | |
21 | 20, 5 | sseldd 3151 | . . . 4 |
22 | eqid 2173 | . . . . 5 | |
23 | eqid 2173 | . . . . 5 | |
24 | eqid 2173 | . . . . 5 | |
25 | 22, 23, 24 | grpidlcan 12792 | . . . 4 |
26 | 19, 21, 21, 25 | syl3anc 1236 | . . 3 |
27 | 18, 26 | mpbid 148 | . 2 |
28 | 27 | eqcomd 2179 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1351 wcel 2144 wral 2451 wss 3124 cfv 5205 (class class class)co 5862 cbs 12425 cplusg 12489 c0g 12623 cgrp 12735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-sep 4113 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-cnex 7874 ax-resscn 7875 ax-1re 7877 ax-addrcl 7880 |
This theorem depends on definitions: df-bi 117 df-3an 978 df-tru 1354 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ral 2456 df-rex 2457 df-reu 2458 df-rmo 2459 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-un 3128 df-in 3130 df-ss 3137 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-br 3996 df-opab 4057 df-mpt 4058 df-id 4284 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-iota 5167 df-fun 5207 df-fn 5208 df-fv 5213 df-riota 5818 df-ov 5865 df-inn 8888 df-2 8946 df-ndx 12428 df-slot 12429 df-base 12431 df-plusg 12502 df-0g 12625 df-mgm 12637 df-sgrp 12670 df-mnd 12680 df-grp 12738 |
This theorem is referenced by: grpinvssd 12803 |
Copyright terms: Public domain | W3C validator |