ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidssd Unicode version

Theorem grpidssd 12946
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidssd.m  |-  ( ph  ->  M  e.  Grp )
grpidssd.s  |-  ( ph  ->  S  e.  Grp )
grpidssd.b  |-  B  =  ( Base `  S
)
grpidssd.c  |-  ( ph  ->  B  C_  ( Base `  M ) )
grpidssd.o  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  =  ( x ( +g  `  S ) y ) )
Assertion
Ref Expression
grpidssd  |-  ( ph  ->  ( 0g `  M
)  =  ( 0g
`  S ) )
Distinct variable groups:    x, B, y   
x, M, y    x, S, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem grpidssd
StepHypRef Expression
1 grpidssd.s . . . . . 6  |-  ( ph  ->  S  e.  Grp )
2 grpidssd.b . . . . . . 7  |-  B  =  ( Base `  S
)
3 eqid 2177 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
42, 3grpidcl 12904 . . . . . 6  |-  ( S  e.  Grp  ->  ( 0g `  S )  e.  B )
51, 4syl 14 . . . . 5  |-  ( ph  ->  ( 0g `  S
)  e.  B )
6 grpidssd.o . . . . 5  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  =  ( x ( +g  `  S ) y ) )
7 oveq1 5882 . . . . . . 7  |-  ( x  =  ( 0g `  S )  ->  (
x ( +g  `  M
) y )  =  ( ( 0g `  S ) ( +g  `  M ) y ) )
8 oveq1 5882 . . . . . . 7  |-  ( x  =  ( 0g `  S )  ->  (
x ( +g  `  S
) y )  =  ( ( 0g `  S ) ( +g  `  S ) y ) )
97, 8eqeq12d 2192 . . . . . 6  |-  ( x  =  ( 0g `  S )  ->  (
( x ( +g  `  M ) y )  =  ( x ( +g  `  S ) y )  <->  ( ( 0g `  S ) ( +g  `  M ) y )  =  ( ( 0g `  S
) ( +g  `  S
) y ) ) )
10 oveq2 5883 . . . . . . 7  |-  ( y  =  ( 0g `  S )  ->  (
( 0g `  S
) ( +g  `  M
) y )  =  ( ( 0g `  S ) ( +g  `  M ) ( 0g
`  S ) ) )
11 oveq2 5883 . . . . . . 7  |-  ( y  =  ( 0g `  S )  ->  (
( 0g `  S
) ( +g  `  S
) y )  =  ( ( 0g `  S ) ( +g  `  S ) ( 0g
`  S ) ) )
1210, 11eqeq12d 2192 . . . . . 6  |-  ( y  =  ( 0g `  S )  ->  (
( ( 0g `  S ) ( +g  `  M ) y )  =  ( ( 0g
`  S ) ( +g  `  S ) y )  <->  ( ( 0g `  S ) ( +g  `  M ) ( 0g `  S
) )  =  ( ( 0g `  S
) ( +g  `  S
) ( 0g `  S ) ) ) )
139, 12rspc2va 2856 . . . . 5  |-  ( ( ( ( 0g `  S )  e.  B  /\  ( 0g `  S
)  e.  B )  /\  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  =  ( x ( +g  `  S
) y ) )  ->  ( ( 0g
`  S ) ( +g  `  M ) ( 0g `  S
) )  =  ( ( 0g `  S
) ( +g  `  S
) ( 0g `  S ) ) )
145, 5, 6, 13syl21anc 1237 . . . 4  |-  ( ph  ->  ( ( 0g `  S ) ( +g  `  M ) ( 0g
`  S ) )  =  ( ( 0g
`  S ) ( +g  `  S ) ( 0g `  S
) ) )
15 eqid 2177 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
162, 15, 3grplid 12906 . . . . 5  |-  ( ( S  e.  Grp  /\  ( 0g `  S )  e.  B )  -> 
( ( 0g `  S ) ( +g  `  S ) ( 0g
`  S ) )  =  ( 0g `  S ) )
171, 4, 16syl2anc2 412 . . . 4  |-  ( ph  ->  ( ( 0g `  S ) ( +g  `  S ) ( 0g
`  S ) )  =  ( 0g `  S ) )
1814, 17eqtrd 2210 . . 3  |-  ( ph  ->  ( ( 0g `  S ) ( +g  `  M ) ( 0g
`  S ) )  =  ( 0g `  S ) )
19 grpidssd.m . . . 4  |-  ( ph  ->  M  e.  Grp )
20 grpidssd.c . . . . 5  |-  ( ph  ->  B  C_  ( Base `  M ) )
2120, 5sseldd 3157 . . . 4  |-  ( ph  ->  ( 0g `  S
)  e.  ( Base `  M ) )
22 eqid 2177 . . . . 5  |-  ( Base `  M )  =  (
Base `  M )
23 eqid 2177 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
24 eqid 2177 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
2522, 23, 24grpidlcan 12936 . . . 4  |-  ( ( M  e.  Grp  /\  ( 0g `  S )  e.  ( Base `  M
)  /\  ( 0g `  S )  e.  (
Base `  M )
)  ->  ( (
( 0g `  S
) ( +g  `  M
) ( 0g `  S ) )  =  ( 0g `  S
)  <->  ( 0g `  S )  =  ( 0g `  M ) ) )
2619, 21, 21, 25syl3anc 1238 . . 3  |-  ( ph  ->  ( ( ( 0g
`  S ) ( +g  `  M ) ( 0g `  S
) )  =  ( 0g `  S )  <-> 
( 0g `  S
)  =  ( 0g
`  M ) ) )
2718, 26mpbid 147 . 2  |-  ( ph  ->  ( 0g `  S
)  =  ( 0g
`  M ) )
2827eqcomd 2183 1  |-  ( ph  ->  ( 0g `  M
)  =  ( 0g
`  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3130   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536   0gc0g 12705   Grpcgrp 12877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-riota 5831  df-ov 5878  df-inn 8920  df-2 8978  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880
This theorem is referenced by:  grpinvssd  12947
  Copyright terms: Public domain W3C validator