ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidlcan GIF version

Theorem grpidlcan 13198
Description: If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidrcan.b 𝐵 = (Base‘𝐺)
grpidrcan.p + = (+g𝐺)
grpidrcan.o 0 = (0g𝐺)
Assertion
Ref Expression
grpidlcan ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = 𝑋𝑍 = 0 ))

Proof of Theorem grpidlcan
StepHypRef Expression
1 grpidrcan.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpidrcan.p . . . . 5 + = (+g𝐺)
3 grpidrcan.o . . . . 5 0 = (0g𝐺)
41, 2, 3grplid 13163 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
543adant3 1019 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ( 0 + 𝑋) = 𝑋)
65eqeq2d 2208 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ (𝑍 + 𝑋) = 𝑋))
7 simp1 999 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 𝐺 ∈ Grp)
8 simp3 1001 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 𝑍𝐵)
91, 3grpidcl 13161 . . . 4 (𝐺 ∈ Grp → 0𝐵)
1093ad2ant1 1020 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 0𝐵)
11 simp2 1000 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 𝑋𝐵)
121, 2grprcan 13169 . . 3 ((𝐺 ∈ Grp ∧ (𝑍𝐵0𝐵𝑋𝐵)) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ 𝑍 = 0 ))
137, 8, 10, 11, 12syl13anc 1251 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ 𝑍 = 0 ))
146, 13bitr3d 190 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = 𝑋𝑍 = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927  Grpcgrp 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135
This theorem is referenced by:  grpidssd  13208
  Copyright terms: Public domain W3C validator