ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidlcan GIF version

Theorem grpidlcan 12765
Description: If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidrcan.b 𝐵 = (Base‘𝐺)
grpidrcan.p + = (+g𝐺)
grpidrcan.o 0 = (0g𝐺)
Assertion
Ref Expression
grpidlcan ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = 𝑋𝑍 = 0 ))

Proof of Theorem grpidlcan
StepHypRef Expression
1 grpidrcan.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpidrcan.p . . . . 5 + = (+g𝐺)
3 grpidrcan.o . . . . 5 0 = (0g𝐺)
41, 2, 3grplid 12736 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
543adant3 1012 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ( 0 + 𝑋) = 𝑋)
65eqeq2d 2182 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ (𝑍 + 𝑋) = 𝑋))
7 simp1 992 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 𝐺 ∈ Grp)
8 simp3 994 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 𝑍𝐵)
91, 3grpidcl 12734 . . . 4 (𝐺 ∈ Grp → 0𝐵)
1093ad2ant1 1013 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 0𝐵)
11 simp2 993 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 𝑋𝐵)
121, 2grprcan 12740 . . 3 ((𝐺 ∈ Grp ∧ (𝑍𝐵0𝐵𝑋𝐵)) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ 𝑍 = 0 ))
137, 8, 10, 11, 12syl13anc 1235 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ 𝑍 = 0 ))
146, 13bitr3d 189 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = 𝑋𝑍 = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973   = wceq 1348  wcel 2141  cfv 5198  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  0gc0g 12596  Grpcgrp 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-0g 12598  df-mgm 12610  df-sgrp 12643  df-mnd 12653  df-grp 12711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator