ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvnzcl Unicode version

Theorem grpinvnzcl 13131
Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b  |-  B  =  ( Base `  G
)
grpinvnzcl.z  |-  .0.  =  ( 0g `  G )
grpinvnzcl.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvnzcl  |-  ( ( G  e.  Grp  /\  X  e.  ( B  \  {  .0.  } ) )  ->  ( N `  X )  e.  ( B  \  {  .0.  } ) )

Proof of Theorem grpinvnzcl
StepHypRef Expression
1 eldifi 3281 . . 3  |-  ( X  e.  ( B  \  {  .0.  } )  ->  X  e.  B )
2 grpinvnzcl.b . . . 4  |-  B  =  ( Base `  G
)
3 grpinvnzcl.n . . . 4  |-  N  =  ( invg `  G )
42, 3grpinvcl 13107 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
51, 4sylan2 286 . 2  |-  ( ( G  e.  Grp  /\  X  e.  ( B  \  {  .0.  } ) )  ->  ( N `  X )  e.  B
)
6 eldifsn 3745 . . 3  |-  ( X  e.  ( B  \  {  .0.  } )  <->  ( X  e.  B  /\  X  =/= 
.0.  ) )
7 grpinvnzcl.z . . . . 5  |-  .0.  =  ( 0g `  G )
82, 7, 3grpinvnz 13130 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( N `  X
)  =/=  .0.  )
983expb 1206 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( N `  X )  =/=  .0.  )
106, 9sylan2b 287 . 2  |-  ( ( G  e.  Grp  /\  X  e.  ( B  \  {  .0.  } ) )  ->  ( N `  X )  =/=  .0.  )
11 eldifsn 3745 . 2  |-  ( ( N `  X )  e.  ( B  \  {  .0.  } )  <->  ( ( N `  X )  e.  B  /\  ( N `  X )  =/=  .0.  ) )
125, 10, 11sylanbrc 417 1  |-  ( ( G  e.  Grp  /\  X  e.  ( B  \  {  .0.  } ) )  ->  ( N `  X )  e.  ( B  \  {  .0.  } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364    \ cdif 3150   {csn 3618   ` cfv 5246   Basecbs 12605   0gc0g 12854   Grpcgrp 13059   invgcminusg 13060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-cnex 7953  ax-resscn 7954  ax-1re 7956  ax-addrcl 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-inn 8973  df-2 9031  df-ndx 12608  df-slot 12609  df-base 12611  df-plusg 12695  df-0g 12856  df-mgm 12926  df-sgrp 12972  df-mnd 12985  df-grp 13062  df-minusg 13063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator