ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubinv Unicode version

Theorem grpsubinv 13405
Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
grpsubinv.b  |-  B  =  ( Base `  G
)
grpsubinv.p  |-  .+  =  ( +g  `  G )
grpsubinv.m  |-  .-  =  ( -g `  G )
grpsubinv.n  |-  N  =  ( invg `  G )
grpsubinv.g  |-  ( ph  ->  G  e.  Grp )
grpsubinv.x  |-  ( ph  ->  X  e.  B )
grpsubinv.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
grpsubinv  |-  ( ph  ->  ( X  .-  ( N `  Y )
)  =  ( X 
.+  Y ) )

Proof of Theorem grpsubinv
StepHypRef Expression
1 grpsubinv.x . . 3  |-  ( ph  ->  X  e.  B )
2 grpsubinv.g . . . 4  |-  ( ph  ->  G  e.  Grp )
3 grpsubinv.y . . . 4  |-  ( ph  ->  Y  e.  B )
4 grpsubinv.b . . . . 5  |-  B  =  ( Base `  G
)
5 grpsubinv.n . . . . 5  |-  N  =  ( invg `  G )
64, 5grpinvcl 13380 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
72, 3, 6syl2anc 411 . . 3  |-  ( ph  ->  ( N `  Y
)  e.  B )
8 grpsubinv.p . . . 4  |-  .+  =  ( +g  `  G )
9 grpsubinv.m . . . 4  |-  .-  =  ( -g `  G )
104, 8, 5, 9grpsubval 13378 . . 3  |-  ( ( X  e.  B  /\  ( N `  Y )  e.  B )  -> 
( X  .-  ( N `  Y )
)  =  ( X 
.+  ( N `  ( N `  Y ) ) ) )
111, 7, 10syl2anc 411 . 2  |-  ( ph  ->  ( X  .-  ( N `  Y )
)  =  ( X 
.+  ( N `  ( N `  Y ) ) ) )
124, 5grpinvinv 13399 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  ( N `  Y )
)  =  Y )
132, 3, 12syl2anc 411 . . 3  |-  ( ph  ->  ( N `  ( N `  Y )
)  =  Y )
1413oveq2d 5960 . 2  |-  ( ph  ->  ( X  .+  ( N `  ( N `  Y ) ) )  =  ( X  .+  Y ) )
1511, 14eqtrd 2238 1  |-  ( ph  ->  ( X  .-  ( N `  Y )
)  =  ( X 
.+  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   Grpcgrp 13332   invgcminusg 13333   -gcsg 13334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337
This theorem is referenced by:  issubg4m  13529  isnsg3  13543  ablsub2inv  13647  ablsubsub4  13655
  Copyright terms: Public domain W3C validator