Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpinvnzcl | GIF version |
Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
Ref | Expression |
---|---|
grpinvnzcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvnzcl.z | ⊢ 0 = (0g‘𝐺) |
grpinvnzcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvnzcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3250 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ∈ 𝐵) | |
2 | grpinvnzcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpinvnzcl.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
4 | 2, 3 | grpinvcl 12755 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
5 | 1, 4 | sylan2 284 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ 𝐵) |
6 | eldifsn 3711 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
7 | grpinvnzcl.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
8 | 2, 7, 3 | grpinvnz 12774 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑁‘𝑋) ≠ 0 ) |
9 | 8 | 3expb 1200 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝑁‘𝑋) ≠ 0 ) |
10 | 6, 9 | sylan2b 285 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ≠ 0 ) |
11 | eldifsn 3711 | . 2 ⊢ ((𝑁‘𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ (𝑁‘𝑋) ≠ 0 )) | |
12 | 5, 10, 11 | sylanbrc 415 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1349 ∈ wcel 2142 ≠ wne 2341 ∖ cdif 3119 {csn 3584 ‘cfv 5200 Basecbs 12420 0gc0g 12600 Grpcgrp 12712 invgcminusg 12713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12602 df-mgm 12614 df-sgrp 12647 df-mnd 12657 df-grp 12715 df-minusg 12716 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |