| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvnzcl | GIF version | ||
| Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| grpinvnzcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvnzcl.z | ⊢ 0 = (0g‘𝐺) |
| grpinvnzcl.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvnzcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3306 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ∈ 𝐵) | |
| 2 | grpinvnzcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpinvnzcl.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 4 | 2, 3 | grpinvcl 13547 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 5 | 1, 4 | sylan2 286 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ 𝐵) |
| 6 | eldifsn 3774 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
| 7 | grpinvnzcl.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 8 | 2, 7, 3 | grpinvnz 13570 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑁‘𝑋) ≠ 0 ) |
| 9 | 8 | 3expb 1209 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝑁‘𝑋) ≠ 0 ) |
| 10 | 6, 9 | sylan2b 287 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ≠ 0 ) |
| 11 | eldifsn 3774 | . 2 ⊢ ((𝑁‘𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ (𝑁‘𝑋) ≠ 0 )) | |
| 12 | 5, 10, 11 | sylanbrc 417 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ≠ wne 2380 ∖ cdif 3174 {csn 3646 ‘cfv 5294 Basecbs 12998 0gc0g 13255 Grpcgrp 13499 invgcminusg 13500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-inn 9079 df-2 9137 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |