ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpplusfo Unicode version

Theorem grpplusfo 13290
Description: The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grpplusf.1  |-  B  =  ( Base `  G
)
grpplusf.2  |-  F  =  ( +f `  G )
Assertion
Ref Expression
grpplusfo  |-  ( G  e.  Grp  ->  F : ( B  X.  B ) -onto-> B )

Proof of Theorem grpplusfo
StepHypRef Expression
1 grpmnd 13281 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpplusf.1 . . 3  |-  B  =  ( Base `  G
)
3 grpplusf.2 . . 3  |-  F  =  ( +f `  G )
42, 3mndpfo 13212 . 2  |-  ( G  e.  Mnd  ->  F : ( B  X.  B ) -onto-> B )
51, 4syl 14 1  |-  ( G  e.  Grp  ->  F : ( B  X.  B ) -onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175    X. cxp 4672   -onto->wfo 5268   ` cfv 5270   Basecbs 12774   +fcplusf 13127   Mndcmnd 13190   Grpcgrp 13274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-plusf 13129  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator