ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumvallem2 Unicode version

Theorem gsumvallem2 13135
Description: Lemma for properties of the set of identities of  G. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumvallem2.b  |-  B  =  ( Base `  G
)
gsumvallem2.z  |-  .0.  =  ( 0g `  G )
gsumvallem2.p  |-  .+  =  ( +g  `  G )
gsumvallem2.o  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
Assertion
Ref Expression
gsumvallem2  |-  ( G  e.  Mnd  ->  O  =  {  .0.  } )
Distinct variable groups:    x, y, B   
x, G, y    x,  .+ , y    x,  .0. , y
Allowed substitution hints:    O( x, y)

Proof of Theorem gsumvallem2
StepHypRef Expression
1 gsumvallem2.b . . 3  |-  B  =  ( Base `  G
)
2 gsumvallem2.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsumvallem2.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumvallem2.o . . 3  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
51, 2, 3, 4mgmidsssn0 13037 . 2  |-  ( G  e.  Mnd  ->  O  C_ 
{  .0.  } )
61, 2mndidcl 13081 . . . 4  |-  ( G  e.  Mnd  ->  .0.  e.  B )
71, 3, 2mndlrid 13085 . . . . 5  |-  ( ( G  e.  Mnd  /\  y  e.  B )  ->  ( (  .0.  .+  y )  =  y  /\  ( y  .+  .0.  )  =  y
) )
87ralrimiva 2570 . . . 4  |-  ( G  e.  Mnd  ->  A. y  e.  B  ( (  .0.  .+  y )  =  y  /\  ( y 
.+  .0.  )  =  y ) )
9 oveq1 5930 . . . . . . 7  |-  ( x  =  .0.  ->  (
x  .+  y )  =  (  .0.  .+  y
) )
109eqeq1d 2205 . . . . . 6  |-  ( x  =  .0.  ->  (
( x  .+  y
)  =  y  <->  (  .0.  .+  y )  =  y ) )
1110ovanraleqv 5947 . . . . 5  |-  ( x  =  .0.  ->  ( A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y )  <->  A. y  e.  B  ( (  .0.  .+  y )  =  y  /\  ( y  .+  .0.  )  =  y
) ) )
1211, 4elrab2 2923 . . . 4  |-  (  .0. 
e.  O  <->  (  .0.  e.  B  /\  A. y  e.  B  ( (  .0.  .+  y )  =  y  /\  ( y 
.+  .0.  )  =  y ) ) )
136, 8, 12sylanbrc 417 . . 3  |-  ( G  e.  Mnd  ->  .0.  e.  O )
1413snssd 3768 . 2  |-  ( G  e.  Mnd  ->  {  .0.  } 
C_  O )
155, 14eqssd 3201 1  |-  ( G  e.  Mnd  ->  O  =  {  .0.  } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   {csn 3623   ` cfv 5259  (class class class)co 5923   Basecbs 12688   +g cplusg 12765   0gc0g 12937   Mndcmnd 13067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7972  ax-resscn 7973  ax-1re 7975  ax-addrcl 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5878  df-ov 5926  df-inn 8993  df-2 9051  df-ndx 12691  df-slot 12692  df-base 12694  df-plusg 12778  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator