ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumvallem2 Unicode version

Theorem gsumvallem2 13512
Description: Lemma for properties of the set of identities of  G. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumvallem2.b  |-  B  =  ( Base `  G
)
gsumvallem2.z  |-  .0.  =  ( 0g `  G )
gsumvallem2.p  |-  .+  =  ( +g  `  G )
gsumvallem2.o  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
Assertion
Ref Expression
gsumvallem2  |-  ( G  e.  Mnd  ->  O  =  {  .0.  } )
Distinct variable groups:    x, y, B   
x, G, y    x,  .+ , y    x,  .0. , y
Allowed substitution hints:    O( x, y)

Proof of Theorem gsumvallem2
StepHypRef Expression
1 gsumvallem2.b . . 3  |-  B  =  ( Base `  G
)
2 gsumvallem2.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsumvallem2.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumvallem2.o . . 3  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
51, 2, 3, 4mgmidsssn0 13403 . 2  |-  ( G  e.  Mnd  ->  O  C_ 
{  .0.  } )
61, 2mndidcl 13449 . . . 4  |-  ( G  e.  Mnd  ->  .0.  e.  B )
71, 3, 2mndlrid 13453 . . . . 5  |-  ( ( G  e.  Mnd  /\  y  e.  B )  ->  ( (  .0.  .+  y )  =  y  /\  ( y  .+  .0.  )  =  y
) )
87ralrimiva 2603 . . . 4  |-  ( G  e.  Mnd  ->  A. y  e.  B  ( (  .0.  .+  y )  =  y  /\  ( y 
.+  .0.  )  =  y ) )
9 oveq1 6001 . . . . . . 7  |-  ( x  =  .0.  ->  (
x  .+  y )  =  (  .0.  .+  y
) )
109eqeq1d 2238 . . . . . 6  |-  ( x  =  .0.  ->  (
( x  .+  y
)  =  y  <->  (  .0.  .+  y )  =  y ) )
1110ovanraleqv 6018 . . . . 5  |-  ( x  =  .0.  ->  ( A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y )  <->  A. y  e.  B  ( (  .0.  .+  y )  =  y  /\  ( y  .+  .0.  )  =  y
) ) )
1211, 4elrab2 2962 . . . 4  |-  (  .0. 
e.  O  <->  (  .0.  e.  B  /\  A. y  e.  B  ( (  .0.  .+  y )  =  y  /\  ( y 
.+  .0.  )  =  y ) ) )
136, 8, 12sylanbrc 417 . . 3  |-  ( G  e.  Mnd  ->  .0.  e.  O )
1413snssd 3812 . 2  |-  ( G  e.  Mnd  ->  {  .0.  } 
C_  O )
155, 14eqssd 3241 1  |-  ( G  e.  Mnd  ->  O  =  {  .0.  } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   {csn 3666   ` cfv 5314  (class class class)co 5994   Basecbs 13018   +g cplusg 13096   0gc0g 13275   Mndcmnd 13435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-ov 5997  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator