ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumvallem2 GIF version

Theorem gsumvallem2 13055
Description: Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumvallem2.b 𝐵 = (Base‘𝐺)
gsumvallem2.z 0 = (0g𝐺)
gsumvallem2.p + = (+g𝐺)
gsumvallem2.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
Assertion
Ref Expression
gsumvallem2 (𝐺 ∈ Mnd → 𝑂 = { 0 })
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)

Proof of Theorem gsumvallem2
StepHypRef Expression
1 gsumvallem2.b . . 3 𝐵 = (Base‘𝐺)
2 gsumvallem2.z . . 3 0 = (0g𝐺)
3 gsumvallem2.p . . 3 + = (+g𝐺)
4 gsumvallem2.o . . 3 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
51, 2, 3, 4mgmidsssn0 12957 . 2 (𝐺 ∈ Mnd → 𝑂 ⊆ { 0 })
61, 2mndidcl 13001 . . . 4 (𝐺 ∈ Mnd → 0𝐵)
71, 3, 2mndlrid 13005 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑦𝐵) → (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))
87ralrimiva 2567 . . . 4 (𝐺 ∈ Mnd → ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))
9 oveq1 5917 . . . . . . 7 (𝑥 = 0 → (𝑥 + 𝑦) = ( 0 + 𝑦))
109eqeq1d 2202 . . . . . 6 (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ ( 0 + 𝑦) = 𝑦))
1110ovanraleqv 5934 . . . . 5 (𝑥 = 0 → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)))
1211, 4elrab2 2919 . . . 4 ( 0𝑂 ↔ ( 0𝐵 ∧ ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)))
136, 8, 12sylanbrc 417 . . 3 (𝐺 ∈ Mnd → 0𝑂)
1413snssd 3763 . 2 (𝐺 ∈ Mnd → { 0 } ⊆ 𝑂)
155, 14eqssd 3196 1 (𝐺 ∈ Mnd → 𝑂 = { 0 })
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  {crab 2476  {csn 3618  cfv 5246  (class class class)co 5910  Basecbs 12608  +gcplusg 12685  0gc0g 12857  Mndcmnd 12987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-cnex 7953  ax-resscn 7954  ax-1re 7956  ax-addrcl 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-iota 5207  df-fun 5248  df-fn 5249  df-fv 5254  df-riota 5865  df-ov 5913  df-inn 8973  df-2 9031  df-ndx 12611  df-slot 12612  df-base 12614  df-plusg 12698  df-0g 12859  df-mgm 12929  df-sgrp 12975  df-mnd 12988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator