![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gsumvallem2 | GIF version |
Description: Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumvallem2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumvallem2.z | ⊢ 0 = (0g‘𝐺) |
gsumvallem2.p | ⊢ + = (+g‘𝐺) |
gsumvallem2.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
Ref | Expression |
---|---|
gsumvallem2 | ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumvallem2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumvallem2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumvallem2.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumvallem2.o | . . 3 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
5 | 1, 2, 3, 4 | mgmidsssn0 13003 | . 2 ⊢ (𝐺 ∈ Mnd → 𝑂 ⊆ { 0 }) |
6 | 1, 2 | mndidcl 13047 | . . . 4 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
7 | 1, 3, 2 | mndlrid 13051 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
8 | 7 | ralrimiva 2570 | . . . 4 ⊢ (𝐺 ∈ Mnd → ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
9 | oveq1 5929 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 + 𝑦) = ( 0 + 𝑦)) | |
10 | 9 | eqeq1d 2205 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ ( 0 + 𝑦) = 𝑦)) |
11 | 10 | ovanraleqv 5946 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
12 | 11, 4 | elrab2 2923 | . . . 4 ⊢ ( 0 ∈ 𝑂 ↔ ( 0 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
13 | 6, 8, 12 | sylanbrc 417 | . . 3 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝑂) |
14 | 13 | snssd 3767 | . 2 ⊢ (𝐺 ∈ Mnd → { 0 } ⊆ 𝑂) |
15 | 5, 14 | eqssd 3200 | 1 ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 {csn 3622 ‘cfv 5258 (class class class)co 5922 Basecbs 12654 +gcplusg 12731 0gc0g 12903 Mndcmnd 13033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7968 ax-resscn 7969 ax-1re 7971 ax-addrcl 7974 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8988 df-2 9046 df-ndx 12657 df-slot 12658 df-base 12660 df-plusg 12744 df-0g 12905 df-mgm 12975 df-sgrp 13021 df-mnd 13034 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |