ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0add Unicode version

Theorem gt0add 8504
Description: A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.)
Assertion
Ref Expression
gt0add  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  A  \/  0  <  B ) )

Proof of Theorem gt0add
StepHypRef Expression
1 simp3 999 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  0  <  ( A  +  B
) )
2 0red 7933 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  0  e.  RR )
3 simp1 997 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  A  e.  RR )
4 simp2 998 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  B  e.  RR )
53, 4readdcld 7961 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  ( A  +  B )  e.  RR )
6 axltwlin 7999 . . . 4  |-  ( ( 0  e.  RR  /\  ( A  +  B
)  e.  RR  /\  A  e.  RR )  ->  ( 0  <  ( A  +  B )  ->  ( 0  <  A  \/  A  <  ( A  +  B ) ) ) )
72, 5, 3, 6syl3anc 1238 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  ( A  +  B )  ->  (
0  <  A  \/  A  <  ( A  +  B ) ) ) )
81, 7mpd 13 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  A  \/  A  <  ( A  +  B ) ) )
94, 3ltaddposd 8460 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  B  <->  A  <  ( A  +  B ) ) )
109orbi2d 790 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
( 0  <  A  \/  0  <  B )  <-> 
( 0  <  A  \/  A  <  ( A  +  B ) ) ) )
118, 10mpbird 167 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  A  \/  0  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 708    /\ w3a 978    e. wcel 2146   class class class wbr 3998  (class class class)co 5865   RRcr 7785   0cc0 7786    + caddc 7789    < clt 7966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0id 7894  ax-rnegex 7895  ax-pre-ltwlin 7899  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-iota 5170  df-fv 5216  df-ov 5868  df-pnf 7968  df-mnf 7969  df-ltxr 7971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator