ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0add Unicode version

Theorem gt0add 8492
Description: A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.)
Assertion
Ref Expression
gt0add  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  A  \/  0  <  B ) )

Proof of Theorem gt0add
StepHypRef Expression
1 simp3 994 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  0  <  ( A  +  B
) )
2 0red 7921 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  0  e.  RR )
3 simp1 992 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  A  e.  RR )
4 simp2 993 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  B  e.  RR )
53, 4readdcld 7949 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  ( A  +  B )  e.  RR )
6 axltwlin 7987 . . . 4  |-  ( ( 0  e.  RR  /\  ( A  +  B
)  e.  RR  /\  A  e.  RR )  ->  ( 0  <  ( A  +  B )  ->  ( 0  <  A  \/  A  <  ( A  +  B ) ) ) )
72, 5, 3, 6syl3anc 1233 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  ( A  +  B )  ->  (
0  <  A  \/  A  <  ( A  +  B ) ) ) )
81, 7mpd 13 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  A  \/  A  <  ( A  +  B ) ) )
94, 3ltaddposd 8448 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  B  <->  A  <  ( A  +  B ) ) )
109orbi2d 785 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
( 0  <  A  \/  0  <  B )  <-> 
( 0  <  A  \/  A  <  ( A  +  B ) ) ) )
118, 10mpbird 166 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  A  \/  0  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703    /\ w3a 973    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   RRcr 7773   0cc0 7774    + caddc 7777    < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-pre-ltwlin 7887  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-iota 5160  df-fv 5206  df-ov 5856  df-pnf 7956  df-mnf 7957  df-ltxr 7959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator