![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1le1 | Unicode version |
Description: ![]() ![]() ![]() |
Ref | Expression |
---|---|
1le1 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7986 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | leidi 8472 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 4018 ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1re 7935 ax-pre-ltirr 7953 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-xp 4650 df-cnv 4652 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 |
This theorem is referenced by: nnge1 8972 1elunit 10017 fldiv4p1lem1div2 10336 expge1 10588 leexp1a 10606 bernneq 10672 faclbnd3 10755 facubnd 10757 sumsnf 11449 prodsnf 11632 fprodge1 11679 cos1bnd 11799 sincos1sgn 11804 eirraplem 11816 zabsle1 14858 lgslem2 14860 lgsfcl2 14865 |
Copyright terms: Public domain | W3C validator |