ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1le1 Unicode version

Theorem 1le1 8719
Description:  1  <_  1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
Assertion
Ref Expression
1le1  |-  1  <_  1

Proof of Theorem 1le1
StepHypRef Expression
1 1re 8145 . 2  |-  1  e.  RR
21leidi 8632 1  |-  1  <_  1
Colors of variables: wff set class
Syntax hints:   class class class wbr 4083   1c1 8000    <_ cle 8182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-pre-ltirr 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187
This theorem is referenced by:  nnge1  9133  1elunit  10183  fldiv4p1lem1div2  10525  expge1  10798  leexp1a  10816  bernneq  10882  faclbnd3  10965  facubnd  10967  wrdlen1  11109  wrdl1exs1  11162  sumsnf  11920  prodsnf  12103  fprodge1  12150  cos1bnd  12270  sincos1sgn  12276  eirraplem  12288  zabsle1  15678  lgslem2  15680  lgsfcl2  15685  lgseisen  15753
  Copyright terms: Public domain W3C validator