ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1le1 Unicode version

Theorem 1le1 8591
Description:  1  <_  1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
Assertion
Ref Expression
1le1  |-  1  <_  1

Proof of Theorem 1le1
StepHypRef Expression
1 1re 8018 . 2  |-  1  e.  RR
21leidi 8504 1  |-  1  <_  1
Colors of variables: wff set class
Syntax hints:   class class class wbr 4029   1c1 7873    <_ cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-pre-ltirr 7984
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060
This theorem is referenced by:  nnge1  9005  1elunit  10053  fldiv4p1lem1div2  10374  expge1  10647  leexp1a  10665  bernneq  10731  faclbnd3  10814  facubnd  10816  wrdlen1  10951  sumsnf  11552  prodsnf  11735  fprodge1  11782  cos1bnd  11902  sincos1sgn  11908  eirraplem  11920  zabsle1  15115  lgslem2  15117  lgsfcl2  15122  lgseisen  15190
  Copyright terms: Public domain W3C validator