ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0add GIF version

Theorem gt0add 8347
Description: A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.)
Assertion
Ref Expression
gt0add ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵))

Proof of Theorem gt0add
StepHypRef Expression
1 simp3 983 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → 0 < (𝐴 + 𝐵))
2 0red 7779 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → 0 ∈ ℝ)
3 simp1 981 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℝ)
4 simp2 982 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℝ)
53, 4readdcld 7807 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ)
6 axltwlin 7844 . . . 4 ((0 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐴 + 𝐵) → (0 < 𝐴𝐴 < (𝐴 + 𝐵))))
72, 5, 3, 6syl3anc 1216 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < (𝐴 + 𝐵) → (0 < 𝐴𝐴 < (𝐴 + 𝐵))))
81, 7mpd 13 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴𝐴 < (𝐴 + 𝐵)))
94, 3ltaddposd 8303 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐵𝐴 < (𝐴 + 𝐵)))
109orbi2d 779 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (0 < 𝐴𝐴 < (𝐴 + 𝐵))))
118, 10mpbird 166 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 697  w3a 962  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7631  0cc0 7632   + caddc 7635   < clt 7812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-i2m1 7737  ax-0id 7740  ax-rnegex 7741  ax-pre-ltwlin 7745  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-iota 5088  df-fv 5131  df-ov 5777  df-pnf 7814  df-mnf 7815  df-ltxr 7817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator