| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashdmprop2dom | Unicode version | ||
| Description: A class which contains two ordered pairs with different first components has at least two elements. (Contributed by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| hashdmpropge2.a |
|
| hashdmpropge2.b |
|
| hashdmpropge2.c |
|
| hashdmpropge2.d |
|
| hashdmpropge2.f |
|
| hashdmpropge2.n |
|
| hashdmpropge2.s |
|
| Ref | Expression |
|---|---|
| hashdmprop2dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashdmpropge2.f |
. . 3
| |
| 2 | 1 | dmexd 4989 |
. 2
|
| 3 | hashdmpropge2.c |
. . . . . . 7
| |
| 4 | hashdmpropge2.d |
. . . . . . 7
| |
| 5 | dmpropg 5200 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . . 6
|
| 7 | hashdmpropge2.s |
. . . . . . 7
| |
| 8 | dmss 4921 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 14 |
. . . . . 6
|
| 10 | 6, 9 | eqsstrrd 3261 |
. . . . 5
|
| 11 | hashdmpropge2.a |
. . . . . 6
| |
| 12 | hashdmpropge2.b |
. . . . . 6
| |
| 13 | prssg 3824 |
. . . . . 6
| |
| 14 | 11, 12, 13 | syl2anc 411 |
. . . . 5
|
| 15 | 10, 14 | mpbird 167 |
. . . 4
|
| 16 | 15 | simpld 112 |
. . 3
|
| 17 | 15 | simprd 114 |
. . 3
|
| 18 | hashdmpropge2.n |
. . 3
| |
| 19 | neeq1 2413 |
. . . 4
| |
| 20 | neeq2 2414 |
. . . 4
| |
| 21 | 19, 20 | rspc2ev 2922 |
. . 3
|
| 22 | 16, 17, 18, 21 | syl3anc 1271 |
. 2
|
| 23 | rex2dom 6969 |
. 2
| |
| 24 | 2, 22, 23 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-1o 6560 df-2o 6561 df-en 6886 df-dom 6887 |
| This theorem is referenced by: struct2slots2dom 15833 structgr2slots2dom 15836 |
| Copyright terms: Public domain | W3C validator |