| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashdmprop2dom | Unicode version | ||
| Description: A class which contains two ordered pairs with different first components has at least two elements. (Contributed by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| hashdmpropge2.a |
|
| hashdmpropge2.b |
|
| hashdmpropge2.c |
|
| hashdmpropge2.d |
|
| hashdmpropge2.f |
|
| hashdmpropge2.n |
|
| hashdmpropge2.s |
|
| Ref | Expression |
|---|---|
| hashdmprop2dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashdmpropge2.f |
. . 3
| |
| 2 | 1 | dmexd 4953 |
. 2
|
| 3 | hashdmpropge2.c |
. . . . . . 7
| |
| 4 | hashdmpropge2.d |
. . . . . . 7
| |
| 5 | dmpropg 5164 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . . 6
|
| 7 | hashdmpropge2.s |
. . . . . . 7
| |
| 8 | dmss 4886 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 14 |
. . . . . 6
|
| 10 | 6, 9 | eqsstrrd 3234 |
. . . . 5
|
| 11 | hashdmpropge2.a |
. . . . . 6
| |
| 12 | hashdmpropge2.b |
. . . . . 6
| |
| 13 | prssg 3796 |
. . . . . 6
| |
| 14 | 11, 12, 13 | syl2anc 411 |
. . . . 5
|
| 15 | 10, 14 | mpbird 167 |
. . . 4
|
| 16 | 15 | simpld 112 |
. . 3
|
| 17 | 15 | simprd 114 |
. . 3
|
| 18 | hashdmpropge2.n |
. . 3
| |
| 19 | neeq1 2390 |
. . . 4
| |
| 20 | neeq2 2391 |
. . . 4
| |
| 21 | 19, 20 | rspc2ev 2896 |
. . 3
|
| 22 | 16, 17, 18, 21 | syl3anc 1250 |
. 2
|
| 23 | rex2dom 6924 |
. 2
| |
| 24 | 2, 22, 23 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-1o 6515 df-2o 6516 df-en 6841 df-dom 6842 |
| This theorem is referenced by: struct2slots2dom 15712 structgr2slots2dom 15715 |
| Copyright terms: Public domain | W3C validator |