| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashdmprop2dom | GIF version | ||
| Description: A class which contains two ordered pairs with different first components has at least two elements. (Contributed by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| hashdmpropge2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| hashdmpropge2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| hashdmpropge2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| hashdmpropge2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| hashdmpropge2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑍) |
| hashdmpropge2.n | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| hashdmpropge2.s | ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) |
| Ref | Expression |
|---|---|
| hashdmprop2dom | ⊢ (𝜑 → 2o ≼ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashdmpropge2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑍) | |
| 2 | 1 | dmexd 4953 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 3 | hashdmpropge2.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 4 | hashdmpropge2.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 5 | dmpropg 5164 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) | |
| 6 | 3, 4, 5 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) |
| 7 | hashdmpropge2.s | . . . . . . 7 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) | |
| 8 | dmss 4886 | . . . . . . 7 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) | |
| 9 | 7, 8 | syl 14 | . . . . . 6 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) |
| 10 | 6, 9 | eqsstrrd 3234 | . . . . 5 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐹) |
| 11 | hashdmpropge2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 12 | hashdmpropge2.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 13 | prssg 3796 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) | |
| 14 | 11, 12, 13 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) |
| 15 | 10, 14 | mpbird 167 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹)) |
| 16 | 15 | simpld 112 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝐹) |
| 17 | 15 | simprd 114 | . . 3 ⊢ (𝜑 → 𝐵 ∈ dom 𝐹) |
| 18 | hashdmpropge2.n | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 19 | neeq1 2390 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝑏)) | |
| 20 | neeq2 2391 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝐴 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵)) | |
| 21 | 19, 20 | rspc2ev 2896 | . . 3 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
| 22 | 16, 17, 18, 21 | syl3anc 1250 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
| 23 | rex2dom 6924 | . 2 ⊢ ((dom 𝐹 ∈ V ∧ ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) → 2o ≼ dom 𝐹) | |
| 24 | 2, 22, 23 | syl2anc 411 | 1 ⊢ (𝜑 → 2o ≼ dom 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∃wrex 2486 Vcvv 2773 ⊆ wss 3170 {cpr 3639 〈cop 3641 class class class wbr 4051 dom cdm 4683 2oc2o 6509 ≼ cdom 6839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-1o 6515 df-2o 6516 df-en 6841 df-dom 6842 |
| This theorem is referenced by: struct2slots2dom 15712 structgr2slots2dom 15715 |
| Copyright terms: Public domain | W3C validator |