| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashdmprop2dom | GIF version | ||
| Description: A class which contains two ordered pairs with different first components has at least two elements. (Contributed by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| hashdmpropge2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| hashdmpropge2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| hashdmpropge2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| hashdmpropge2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| hashdmpropge2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑍) |
| hashdmpropge2.n | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| hashdmpropge2.s | ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) |
| Ref | Expression |
|---|---|
| hashdmprop2dom | ⊢ (𝜑 → 2o ≼ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashdmpropge2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑍) | |
| 2 | 1 | dmexd 4989 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 3 | hashdmpropge2.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 4 | hashdmpropge2.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 5 | dmpropg 5200 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) | |
| 6 | 3, 4, 5 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) |
| 7 | hashdmpropge2.s | . . . . . . 7 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) | |
| 8 | dmss 4921 | . . . . . . 7 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) | |
| 9 | 7, 8 | syl 14 | . . . . . 6 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) |
| 10 | 6, 9 | eqsstrrd 3261 | . . . . 5 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐹) |
| 11 | hashdmpropge2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 12 | hashdmpropge2.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 13 | prssg 3824 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) | |
| 14 | 11, 12, 13 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) |
| 15 | 10, 14 | mpbird 167 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹)) |
| 16 | 15 | simpld 112 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝐹) |
| 17 | 15 | simprd 114 | . . 3 ⊢ (𝜑 → 𝐵 ∈ dom 𝐹) |
| 18 | hashdmpropge2.n | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 19 | neeq1 2413 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝑏)) | |
| 20 | neeq2 2414 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝐴 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵)) | |
| 21 | 19, 20 | rspc2ev 2922 | . . 3 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
| 22 | 16, 17, 18, 21 | syl3anc 1271 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
| 23 | rex2dom 6969 | . 2 ⊢ ((dom 𝐹 ∈ V ∧ ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) → 2o ≼ dom 𝐹) | |
| 24 | 2, 22, 23 | syl2anc 411 | 1 ⊢ (𝜑 → 2o ≼ dom 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∃wrex 2509 Vcvv 2799 ⊆ wss 3197 {cpr 3667 〈cop 3669 class class class wbr 4082 dom cdm 4718 2oc2o 6554 ≼ cdom 6884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-1o 6560 df-2o 6561 df-en 6886 df-dom 6887 |
| This theorem is referenced by: struct2slots2dom 15833 structgr2slots2dom 15836 |
| Copyright terms: Public domain | W3C validator |