ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  struct2slots2dom Unicode version

Theorem struct2slots2dom 15833
Description: There are at least two elements in an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Revised by AV, 12-Nov-2021.)
Hypotheses
Ref Expression
structvtxvallem.s  |-  S  e.  NN
structvtxvallem.b  |-  ( Base `  ndx )  <  S
structvtxvallem.g  |-  G  =  { <. ( Base `  ndx ) ,  V >. , 
<. S ,  E >. }
Assertion
Ref Expression
struct2slots2dom  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  2o  ~<_  dom  G )

Proof of Theorem struct2slots2dom
StepHypRef Expression
1 basendxnn 13083 . . . 4  |-  ( Base `  ndx )  e.  NN
21elexi 2812 . . 3  |-  ( Base `  ndx )  e.  _V
32a1i 9 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( Base `  ndx )  e.  _V )
4 structvtxvallem.s . . 3  |-  S  e.  NN
54a1i 9 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  S  e.  NN )
6 simpl 109 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  V  e.  X )
7 simpr 110 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  E  e.  Y )
8 structvtxvallem.g . . 3  |-  G  =  { <. ( Base `  ndx ) ,  V >. , 
<. S ,  E >. }
9 opexg 4313 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  V  e.  X )  ->  <. ( Base `  ndx ) ,  V >.  e.  _V )
101, 6, 9sylancr 414 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  -> 
<. ( Base `  ndx ) ,  V >.  e. 
_V )
11 opexg 4313 . . . . 5  |-  ( ( S  e.  NN  /\  E  e.  Y )  -> 
<. S ,  E >.  e. 
_V )
124, 7, 11sylancr 414 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  -> 
<. S ,  E >.  e. 
_V )
13 prexg 4294 . . . 4  |-  ( (
<. ( Base `  ndx ) ,  V >.  e. 
_V  /\  <. S ,  E >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  V >. , 
<. S ,  E >. }  e.  _V )
1410, 12, 13syl2anc 411 . . 3  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  { <. ( Base `  ndx ) ,  V >. , 
<. S ,  E >. }  e.  _V )
158, 14eqeltrid 2316 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  G  e.  _V )
161nnrei 9115 . . . 4  |-  ( Base `  ndx )  e.  RR
17 structvtxvallem.b . . . 4  |-  ( Base `  ndx )  <  S
1816, 17ltneii 8239 . . 3  |-  ( Base `  ndx )  =/=  S
1918a1i 9 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( Base `  ndx )  =/=  S )
208eqimss2i 3281 . . 3  |-  { <. (
Base `  ndx ) ,  V >. ,  <. S ,  E >. }  C_  G
2120a1i 9 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  { <. ( Base `  ndx ) ,  V >. , 
<. S ,  E >. } 
C_  G )
223, 5, 6, 7, 15, 19, 21hashdmprop2dom 11061 1  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  2o  ~<_  dom  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799    C_ wss 3197   {cpr 3667   <.cop 3669   class class class wbr 4082   dom cdm 4718   ` cfv 5317   2oc2o 6554    ~<_ cdom 6884    < clt 8177   NNcn 9106   ndxcnx 13024   Basecbs 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-pre-ltirr 8107
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-2o 6561  df-en 6886  df-dom 6887  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033
This theorem is referenced by:  structvtxval  15834  structiedg0val  15835
  Copyright terms: Public domain W3C validator