Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iccss2 | Unicode version |
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
iccss2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-icc 9831 | . . . . . 6 | |
2 | 1 | elixx3g 9837 | . . . . 5 |
3 | 2 | simplbi 272 | . . . 4 |
4 | 3 | adantr 274 | . . 3 |
5 | 4 | simp1d 999 | . 2 |
6 | 4 | simp2d 1000 | . 2 |
7 | 2 | simprbi 273 | . . . 4 |
8 | 7 | adantr 274 | . . 3 |
9 | 8 | simpld 111 | . 2 |
10 | 1 | elixx3g 9837 | . . . . 5 |
11 | 10 | simprbi 273 | . . . 4 |
12 | 11 | simprd 113 | . . 3 |
13 | 12 | adantl 275 | . 2 |
14 | xrletr 9744 | . . 3 | |
15 | xrletr 9744 | . . 3 | |
16 | 1, 1, 14, 15 | ixxss12 9842 | . 2 |
17 | 5, 6, 9, 13, 16 | syl22anc 1229 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wcel 2136 wss 3116 class class class wbr 3982 (class class class)co 5842 cxr 7932 cle 7934 cicc 9827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-icc 9831 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |