ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccss2 Unicode version

Theorem iccss2 9946
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
iccss2  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  -> 
( C [,] D
)  C_  ( A [,] B ) )

Proof of Theorem iccss2
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 9897 . . . . . 6  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
21elixx3g 9903 . . . . 5  |-  ( C  e.  ( A [,] B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <_  C  /\  C  <_  B ) ) )
32simplbi 274 . . . 4  |-  ( C  e.  ( A [,] B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* ) )
43adantr 276 . . 3  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  -> 
( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* ) )
54simp1d 1009 . 2  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  ->  A  e.  RR* )
64simp2d 1010 . 2  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  ->  B  e.  RR* )
72simprbi 275 . . . 4  |-  ( C  e.  ( A [,] B )  ->  ( A  <_  C  /\  C  <_  B ) )
87adantr 276 . . 3  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  -> 
( A  <_  C  /\  C  <_  B ) )
98simpld 112 . 2  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  ->  A  <_  C )
101elixx3g 9903 . . . . 5  |-  ( D  e.  ( A [,] B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <_  D  /\  D  <_  B ) ) )
1110simprbi 275 . . . 4  |-  ( D  e.  ( A [,] B )  ->  ( A  <_  D  /\  D  <_  B ) )
1211simprd 114 . . 3  |-  ( D  e.  ( A [,] B )  ->  D  <_  B )
1312adantl 277 . 2  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  ->  D  <_  B )
14 xrletr 9810 . . 3  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A  <_  C  /\  C  <_  w )  ->  A  <_  w
) )
15 xrletr 9810 . . 3  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w  <_  D  /\  D  <_  B )  ->  w  <_  B
) )
161, 1, 14, 15ixxss12 9908 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  C  /\  D  <_  B ) )  ->  ( C [,] D )  C_  ( A [,] B ) )
175, 6, 9, 13, 16syl22anc 1239 1  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  -> 
( C [,] D
)  C_  ( A [,] B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    e. wcel 2148    C_ wss 3131   class class class wbr 4005  (class class class)co 5877   RR*cxr 7993    <_ cle 7995   [,]cicc 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-icc 9897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator