ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxss12 Unicode version

Theorem ixxss12 9909
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxss12.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
ixxss12.3  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W C  /\  C T w )  ->  A R w ) )
ixxss12.4  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w U D  /\  D X B )  ->  w S B ) )
Assertion
Ref Expression
ixxss12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  ( C P D )  C_  ( A O B ) )
Distinct variable groups:    x, w, y, z, A    w, C, x, y, z    w, D, x, y, z    w, O, x    w, B, x, y, z    w, P   
x, R, y, z   
x, S, y, z   
x, T, y, z   
x, U, y, z   
w, W    w, X
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    U( w)    O( y,
z)    W( x, y, z)    X( x, y, z)

Proof of Theorem ixxss12
StepHypRef Expression
1 ixxss12.2 . . . . . . . 8  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
21elixx3g 9904 . . . . . . 7  |-  ( w  e.  ( C P D )  <->  ( ( C  e.  RR*  /\  D  e.  RR*  /\  w  e. 
RR* )  /\  ( C T w  /\  w U D ) ) )
32simplbi 274 . . . . . 6  |-  ( w  e.  ( C P D )  ->  ( C  e.  RR*  /\  D  e.  RR*  /\  w  e. 
RR* ) )
43adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( C  e.  RR*  /\  D  e.  RR*  /\  w  e.  RR* ) )
54simp3d 1011 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w  e.  RR* )
6 simplrl 535 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A W C )
72simprbi 275 . . . . . . 7  |-  ( w  e.  ( C P D )  ->  ( C T w  /\  w U D ) )
87adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( C T w  /\  w U D ) )
98simpld 112 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  C T w )
10 simplll 533 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A  e.  RR* )
114simp1d 1009 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  C  e.  RR* )
12 ixxss12.3 . . . . . 6  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W C  /\  C T w )  ->  A R w ) )
1310, 11, 5, 12syl3anc 1238 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( ( A W C  /\  C T w )  ->  A R w ) )
146, 9, 13mp2and 433 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A R w )
158simprd 114 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w U D )
16 simplrr 536 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  D X B )
174simp2d 1010 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  D  e.  RR* )
18 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  B  e.  RR* )
19 ixxss12.4 . . . . . 6  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w U D  /\  D X B )  ->  w S B ) )
205, 17, 18, 19syl3anc 1238 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( ( w U D  /\  D X B )  ->  w S B ) )
2115, 16, 20mp2and 433 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w S B )
22 ixxssixx.1 . . . . . 6  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
2322elixx1 9900 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
2423ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( w  e.  ( A O B )  <-> 
( w  e.  RR*  /\  A R w  /\  w S B ) ) )
255, 14, 21, 24mpbir3and 1180 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w  e.  ( A O B ) )
2625ex 115 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  (
w  e.  ( C P D )  ->  w  e.  ( A O B ) ) )
2726ssrdv 3163 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  ( C P D )  C_  ( A O B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {crab 2459    C_ wss 3131   class class class wbr 4005  (class class class)co 5878    e. cmpo 5880   RR*cxr 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999
This theorem is referenced by:  iccss  9944  iccssioo  9945  icossico  9946  iccss2  9947  iccssico  9948  iocssioo  9966  icossioo  9967  ioossioo  9968
  Copyright terms: Public domain W3C validator