ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxss12 Unicode version

Theorem ixxss12 9863
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxss12.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
ixxss12.3  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W C  /\  C T w )  ->  A R w ) )
ixxss12.4  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w U D  /\  D X B )  ->  w S B ) )
Assertion
Ref Expression
ixxss12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  ( C P D )  C_  ( A O B ) )
Distinct variable groups:    x, w, y, z, A    w, C, x, y, z    w, D, x, y, z    w, O, x    w, B, x, y, z    w, P   
x, R, y, z   
x, S, y, z   
x, T, y, z   
x, U, y, z   
w, W    w, X
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    U( w)    O( y,
z)    W( x, y, z)    X( x, y, z)

Proof of Theorem ixxss12
StepHypRef Expression
1 ixxss12.2 . . . . . . . 8  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
21elixx3g 9858 . . . . . . 7  |-  ( w  e.  ( C P D )  <->  ( ( C  e.  RR*  /\  D  e.  RR*  /\  w  e. 
RR* )  /\  ( C T w  /\  w U D ) ) )
32simplbi 272 . . . . . 6  |-  ( w  e.  ( C P D )  ->  ( C  e.  RR*  /\  D  e.  RR*  /\  w  e. 
RR* ) )
43adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( C  e.  RR*  /\  D  e.  RR*  /\  w  e.  RR* ) )
54simp3d 1006 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w  e.  RR* )
6 simplrl 530 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A W C )
72simprbi 273 . . . . . . 7  |-  ( w  e.  ( C P D )  ->  ( C T w  /\  w U D ) )
87adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( C T w  /\  w U D ) )
98simpld 111 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  C T w )
10 simplll 528 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A  e.  RR* )
114simp1d 1004 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  C  e.  RR* )
12 ixxss12.3 . . . . . 6  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W C  /\  C T w )  ->  A R w ) )
1310, 11, 5, 12syl3anc 1233 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( ( A W C  /\  C T w )  ->  A R w ) )
146, 9, 13mp2and 431 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A R w )
158simprd 113 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w U D )
16 simplrr 531 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  D X B )
174simp2d 1005 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  D  e.  RR* )
18 simpllr 529 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  B  e.  RR* )
19 ixxss12.4 . . . . . 6  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w U D  /\  D X B )  ->  w S B ) )
205, 17, 18, 19syl3anc 1233 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( ( w U D  /\  D X B )  ->  w S B ) )
2115, 16, 20mp2and 431 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w S B )
22 ixxssixx.1 . . . . . 6  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
2322elixx1 9854 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
2423ad2antrr 485 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( w  e.  ( A O B )  <-> 
( w  e.  RR*  /\  A R w  /\  w S B ) ) )
255, 14, 21, 24mpbir3and 1175 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w  e.  ( A O B ) )
2625ex 114 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  (
w  e.  ( C P D )  ->  w  e.  ( A O B ) ) )
2726ssrdv 3153 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  ( C P D )  C_  ( A O B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   {crab 2452    C_ wss 3121   class class class wbr 3989  (class class class)co 5853    e. cmpo 5855   RR*cxr 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958
This theorem is referenced by:  iccss  9898  iccssioo  9899  icossico  9900  iccss2  9901  iccssico  9902  iocssioo  9920  icossioo  9921  ioossioo  9922
  Copyright terms: Public domain W3C validator