| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixxss12 | Unicode version | ||
| Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ixxssixx.1 |
|
| ixxss12.2 |
|
| ixxss12.3 |
|
| ixxss12.4 |
|
| Ref | Expression |
|---|---|
| ixxss12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxss12.2 |
. . . . . . . 8
| |
| 2 | 1 | elixx3g 10093 |
. . . . . . 7
|
| 3 | 2 | simplbi 274 |
. . . . . 6
|
| 4 | 3 | adantl 277 |
. . . . 5
|
| 5 | 4 | simp3d 1035 |
. . . 4
|
| 6 | simplrl 535 |
. . . . 5
| |
| 7 | 2 | simprbi 275 |
. . . . . . 7
|
| 8 | 7 | adantl 277 |
. . . . . 6
|
| 9 | 8 | simpld 112 |
. . . . 5
|
| 10 | simplll 533 |
. . . . . 6
| |
| 11 | 4 | simp1d 1033 |
. . . . . 6
|
| 12 | ixxss12.3 |
. . . . . 6
| |
| 13 | 10, 11, 5, 12 | syl3anc 1271 |
. . . . 5
|
| 14 | 6, 9, 13 | mp2and 433 |
. . . 4
|
| 15 | 8 | simprd 114 |
. . . . 5
|
| 16 | simplrr 536 |
. . . . 5
| |
| 17 | 4 | simp2d 1034 |
. . . . . 6
|
| 18 | simpllr 534 |
. . . . . 6
| |
| 19 | ixxss12.4 |
. . . . . 6
| |
| 20 | 5, 17, 18, 19 | syl3anc 1271 |
. . . . 5
|
| 21 | 15, 16, 20 | mp2and 433 |
. . . 4
|
| 22 | ixxssixx.1 |
. . . . . 6
| |
| 23 | 22 | elixx1 10089 |
. . . . 5
|
| 24 | 23 | ad2antrr 488 |
. . . 4
|
| 25 | 5, 14, 21, 24 | mpbir3and 1204 |
. . 3
|
| 26 | 25 | ex 115 |
. 2
|
| 27 | 26 | ssrdv 3230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 |
| This theorem is referenced by: iccss 10133 iccssioo 10134 icossico 10135 iccss2 10136 iccssico 10137 iocssioo 10155 icossioo 10156 ioossioo 10157 |
| Copyright terms: Public domain | W3C validator |