ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxss12 Unicode version

Theorem ixxss12 9975
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxss12.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
ixxss12.3  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W C  /\  C T w )  ->  A R w ) )
ixxss12.4  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w U D  /\  D X B )  ->  w S B ) )
Assertion
Ref Expression
ixxss12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  ( C P D )  C_  ( A O B ) )
Distinct variable groups:    x, w, y, z, A    w, C, x, y, z    w, D, x, y, z    w, O, x    w, B, x, y, z    w, P   
x, R, y, z   
x, S, y, z   
x, T, y, z   
x, U, y, z   
w, W    w, X
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    U( w)    O( y,
z)    W( x, y, z)    X( x, y, z)

Proof of Theorem ixxss12
StepHypRef Expression
1 ixxss12.2 . . . . . . . 8  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
21elixx3g 9970 . . . . . . 7  |-  ( w  e.  ( C P D )  <->  ( ( C  e.  RR*  /\  D  e.  RR*  /\  w  e. 
RR* )  /\  ( C T w  /\  w U D ) ) )
32simplbi 274 . . . . . 6  |-  ( w  e.  ( C P D )  ->  ( C  e.  RR*  /\  D  e.  RR*  /\  w  e. 
RR* ) )
43adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( C  e.  RR*  /\  D  e.  RR*  /\  w  e.  RR* ) )
54simp3d 1013 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w  e.  RR* )
6 simplrl 535 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A W C )
72simprbi 275 . . . . . . 7  |-  ( w  e.  ( C P D )  ->  ( C T w  /\  w U D ) )
87adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( C T w  /\  w U D ) )
98simpld 112 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  C T w )
10 simplll 533 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A  e.  RR* )
114simp1d 1011 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  C  e.  RR* )
12 ixxss12.3 . . . . . 6  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W C  /\  C T w )  ->  A R w ) )
1310, 11, 5, 12syl3anc 1249 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( ( A W C  /\  C T w )  ->  A R w ) )
146, 9, 13mp2and 433 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A R w )
158simprd 114 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w U D )
16 simplrr 536 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  D X B )
174simp2d 1012 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  D  e.  RR* )
18 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  B  e.  RR* )
19 ixxss12.4 . . . . . 6  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w U D  /\  D X B )  ->  w S B ) )
205, 17, 18, 19syl3anc 1249 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( ( w U D  /\  D X B )  ->  w S B ) )
2115, 16, 20mp2and 433 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w S B )
22 ixxssixx.1 . . . . . 6  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
2322elixx1 9966 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
2423ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( w  e.  ( A O B )  <-> 
( w  e.  RR*  /\  A R w  /\  w S B ) ) )
255, 14, 21, 24mpbir3and 1182 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w  e.  ( A O B ) )
2625ex 115 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  (
w  e.  ( C P D )  ->  w  e.  ( A O B ) ) )
2726ssrdv 3186 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  ( C P D )  C_  ( A O B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {crab 2476    C_ wss 3154   class class class wbr 4030  (class class class)co 5919    e. cmpo 5921   RR*cxr 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060
This theorem is referenced by:  iccss  10010  iccssioo  10011  icossico  10012  iccss2  10013  iccssico  10014  iocssioo  10032  icossioo  10033  ioossioo  10034
  Copyright terms: Public domain W3C validator