| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixxss12 | Unicode version | ||
| Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ixxssixx.1 |
|
| ixxss12.2 |
|
| ixxss12.3 |
|
| ixxss12.4 |
|
| Ref | Expression |
|---|---|
| ixxss12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxss12.2 |
. . . . . . . 8
| |
| 2 | 1 | elixx3g 9993 |
. . . . . . 7
|
| 3 | 2 | simplbi 274 |
. . . . . 6
|
| 4 | 3 | adantl 277 |
. . . . 5
|
| 5 | 4 | simp3d 1013 |
. . . 4
|
| 6 | simplrl 535 |
. . . . 5
| |
| 7 | 2 | simprbi 275 |
. . . . . . 7
|
| 8 | 7 | adantl 277 |
. . . . . 6
|
| 9 | 8 | simpld 112 |
. . . . 5
|
| 10 | simplll 533 |
. . . . . 6
| |
| 11 | 4 | simp1d 1011 |
. . . . . 6
|
| 12 | ixxss12.3 |
. . . . . 6
| |
| 13 | 10, 11, 5, 12 | syl3anc 1249 |
. . . . 5
|
| 14 | 6, 9, 13 | mp2and 433 |
. . . 4
|
| 15 | 8 | simprd 114 |
. . . . 5
|
| 16 | simplrr 536 |
. . . . 5
| |
| 17 | 4 | simp2d 1012 |
. . . . . 6
|
| 18 | simpllr 534 |
. . . . . 6
| |
| 19 | ixxss12.4 |
. . . . . 6
| |
| 20 | 5, 17, 18, 19 | syl3anc 1249 |
. . . . 5
|
| 21 | 15, 16, 20 | mp2and 433 |
. . . 4
|
| 22 | ixxssixx.1 |
. . . . . 6
| |
| 23 | 22 | elixx1 9989 |
. . . . 5
|
| 24 | 23 | ad2antrr 488 |
. . . 4
|
| 25 | 5, 14, 21, 24 | mpbir3and 1182 |
. . 3
|
| 26 | 25 | ex 115 |
. 2
|
| 27 | 26 | ssrdv 3190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 |
| This theorem is referenced by: iccss 10033 iccssioo 10034 icossico 10035 iccss2 10036 iccssico 10037 iocssioo 10055 icossioo 10056 ioossioo 10057 |
| Copyright terms: Public domain | W3C validator |