ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxss12 Unicode version

Theorem ixxss12 9938
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxss12.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
ixxss12.3  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W C  /\  C T w )  ->  A R w ) )
ixxss12.4  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w U D  /\  D X B )  ->  w S B ) )
Assertion
Ref Expression
ixxss12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  ( C P D )  C_  ( A O B ) )
Distinct variable groups:    x, w, y, z, A    w, C, x, y, z    w, D, x, y, z    w, O, x    w, B, x, y, z    w, P   
x, R, y, z   
x, S, y, z   
x, T, y, z   
x, U, y, z   
w, W    w, X
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    U( w)    O( y,
z)    W( x, y, z)    X( x, y, z)

Proof of Theorem ixxss12
StepHypRef Expression
1 ixxss12.2 . . . . . . . 8  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
21elixx3g 9933 . . . . . . 7  |-  ( w  e.  ( C P D )  <->  ( ( C  e.  RR*  /\  D  e.  RR*  /\  w  e. 
RR* )  /\  ( C T w  /\  w U D ) ) )
32simplbi 274 . . . . . 6  |-  ( w  e.  ( C P D )  ->  ( C  e.  RR*  /\  D  e.  RR*  /\  w  e. 
RR* ) )
43adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( C  e.  RR*  /\  D  e.  RR*  /\  w  e.  RR* ) )
54simp3d 1013 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w  e.  RR* )
6 simplrl 535 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A W C )
72simprbi 275 . . . . . . 7  |-  ( w  e.  ( C P D )  ->  ( C T w  /\  w U D ) )
87adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( C T w  /\  w U D ) )
98simpld 112 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  C T w )
10 simplll 533 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A  e.  RR* )
114simp1d 1011 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  C  e.  RR* )
12 ixxss12.3 . . . . . 6  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W C  /\  C T w )  ->  A R w ) )
1310, 11, 5, 12syl3anc 1249 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( ( A W C  /\  C T w )  ->  A R w ) )
146, 9, 13mp2and 433 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  A R w )
158simprd 114 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w U D )
16 simplrr 536 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  D X B )
174simp2d 1012 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  D  e.  RR* )
18 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  B  e.  RR* )
19 ixxss12.4 . . . . . 6  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w U D  /\  D X B )  ->  w S B ) )
205, 17, 18, 19syl3anc 1249 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( ( w U D  /\  D X B )  ->  w S B ) )
2115, 16, 20mp2and 433 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w S B )
22 ixxssixx.1 . . . . . 6  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
2322elixx1 9929 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
2423ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  -> 
( w  e.  ( A O B )  <-> 
( w  e.  RR*  /\  A R w  /\  w S B ) ) )
255, 14, 21, 24mpbir3and 1182 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  /\  w  e.  ( C P D ) )  ->  w  e.  ( A O B ) )
2625ex 115 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  (
w  e.  ( C P D )  ->  w  e.  ( A O B ) ) )
2726ssrdv 3176 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  ( C P D )  C_  ( A O B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   {crab 2472    C_ wss 3144   class class class wbr 4018  (class class class)co 5897    e. cmpo 5899   RR*cxr 8022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027
This theorem is referenced by:  iccss  9973  iccssioo  9974  icossico  9975  iccss2  9976  iccssico  9977  iocssioo  9995  icossioo  9996  ioossioo  9997
  Copyright terms: Public domain W3C validator