| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elixx3g | Unicode version | ||
| Description: Membership in a set of
open intervals of extended reals. We use the
fact that an operation's value is empty outside of its domain to show
|
| Ref | Expression |
|---|---|
| ixxssxr.1 |
|
| Ref | Expression |
|---|---|
| elixx3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 401 |
. 2
| |
| 2 | df-3an 982 |
. . 3
| |
| 3 | 2 | anbi1i 458 |
. 2
|
| 4 | ixxssxr.1 |
. . . 4
| |
| 5 | 4 | elmpocl 6118 |
. . 3
|
| 6 | 4 | elixx1 9972 |
. . . 4
|
| 7 | 3anass 984 |
. . . 4
| |
| 8 | 6, 7 | bitrdi 196 |
. . 3
|
| 9 | 5, 8 | biadan2 456 |
. 2
|
| 10 | 1, 3, 9 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 |
| This theorem is referenced by: ixxss1 9979 ixxss2 9980 ixxss12 9981 elioo3g 9985 iccss2 10019 iccssico2 10022 elicore 10356 |
| Copyright terms: Public domain | W3C validator |