ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elixx3g Unicode version

Theorem elixx3g 9933
Description: Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show  A  e.  RR* and  B  e.  RR*. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
ixxssxr.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
elixx3g  |-  ( C  e.  ( A O B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A R C  /\  C S B ) ) )
Distinct variable groups:    x, y, z, R    x, S, y, z    x, A, y, z    x, B, y, z    x, C, y, z
Allowed substitution hints:    O( x, y, z)

Proof of Theorem elixx3g
StepHypRef Expression
1 anass 401 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  ( A R C  /\  C S B ) )  <->  ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  ( A R C  /\  C S B ) ) ) )
2 df-3an 982 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  <->  ( ( A  e.  RR*  /\  B  e.  RR* )  /\  C  e.  RR* ) )
32anbi1i 458 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A R C  /\  C S B ) )  <->  ( (
( A  e.  RR*  /\  B  e.  RR* )  /\  C  e.  RR* )  /\  ( A R C  /\  C S B ) ) )
4 ixxssxr.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
54elmpocl 6092 . . 3  |-  ( C  e.  ( A O B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
64elixx1 9929 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B )  <->  ( C  e.  RR*  /\  A R C  /\  C S B ) ) )
7 3anass 984 . . . 4  |-  ( ( C  e.  RR*  /\  A R C  /\  C S B )  <->  ( C  e.  RR*  /\  ( A R C  /\  C S B ) ) )
86, 7bitrdi 196 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B )  <->  ( C  e.  RR*  /\  ( A R C  /\  C S B ) ) ) )
95, 8biadan2 456 . 2  |-  ( C  e.  ( A O B )  <->  ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  ( A R C  /\  C S B ) ) ) )
101, 3, 93bitr4ri 213 1  |-  ( C  e.  ( A O B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A R C  /\  C S B ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   {crab 2472   class class class wbr 4018  (class class class)co 5897    e. cmpo 5899   RR*cxr 8022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027
This theorem is referenced by:  ixxss1  9936  ixxss2  9937  ixxss12  9938  elioo3g  9942  iccss2  9976  iccssico2  9979  elicore  10299
  Copyright terms: Public domain W3C validator