ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isghm3 Unicode version

Theorem isghm3 13781
Description: Property of a group homomorphism, similar to ismhm 13494. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
isghm.w  |-  X  =  ( Base `  S
)
isghm.x  |-  Y  =  ( Base `  T
)
isghm.a  |-  .+  =  ( +g  `  S )
isghm.b  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
isghm3  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( F  e.  ( S  GrpHom  T )  <->  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) ) ) )
Distinct variable groups:    v, u, S   
u, T, v    u, X, v    u,  .+ , v    u, Y, v    u,  .+^ , v    u, F, v

Proof of Theorem isghm3
StepHypRef Expression
1 isghm.w . . 3  |-  X  =  ( Base `  S
)
2 isghm.x . . 3  |-  Y  =  ( Base `  T
)
3 isghm.a . . 3  |-  .+  =  ( +g  `  S )
4 isghm.b . . 3  |-  .+^  =  ( +g  `  T )
51, 2, 3, 4isghm 13780 . 2  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) ) ) )
65baib 924 1  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( F  e.  ( S  GrpHom  T )  <->  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   -->wf 5314   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   Grpcgrp 13533    GrpHom cghm 13777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-ghm 13778
This theorem is referenced by:  dfrhm2  14118
  Copyright terms: Public domain W3C validator