ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmgrp1 Unicode version

Theorem ghmgrp1 13451
Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmgrp1  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )

Proof of Theorem ghmgrp1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
2 eqid 2196 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
3 eqid 2196 . . . 4  |-  ( +g  `  S )  =  ( +g  `  S )
4 eqid 2196 . . . 4  |-  ( +g  `  T )  =  ( +g  `  T )
51, 2, 3, 4isghm 13449 . . 3  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. y  e.  ( Base `  S
) A. x  e.  ( Base `  S
) ( F `  ( y ( +g  `  S ) x ) )  =  ( ( F `  y ) ( +g  `  T
) ( F `  x ) ) ) ) )
65simplbi 274 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( S  e.  Grp  /\  T  e. 
Grp ) )
76simpld 112 1  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   -->wf 5255   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   Grpcgrp 13202    GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-ghm 13447
This theorem is referenced by:  ghmid  13455  ghminv  13456  ghmsub  13457  ghmmhm  13459  ghmmulg  13462  ghmrn  13463  resghm2  13467  resghm2b  13468  ghmco  13470  ghmpreima  13472  ghmeql  13473  ghmnsgima  13474  ghmnsgpreima  13475  ghmeqker  13477  f1ghm0to0  13478  ghmf1  13479  kerf1ghm  13480  ghmf1o  13481  ghmpropd  13489  invghm  13535
  Copyright terms: Public domain W3C validator