| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isghm3 | GIF version | ||
| Description: Property of a group homomorphism, similar to ismhm 13368. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| isghm.w | ⊢ 𝑋 = (Base‘𝑆) |
| isghm.x | ⊢ 𝑌 = (Base‘𝑇) |
| isghm.a | ⊢ + = (+g‘𝑆) |
| isghm.b | ⊢ ⨣ = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| isghm3 | ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isghm.w | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
| 2 | isghm.x | . . 3 ⊢ 𝑌 = (Base‘𝑇) | |
| 3 | isghm.a | . . 3 ⊢ + = (+g‘𝑆) | |
| 4 | isghm.b | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 13654 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) |
| 6 | 5 | baib 921 | 1 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⟶wf 5276 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 Grpcgrp 13407 GrpHom cghm 13651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-inn 9057 df-ndx 12910 df-slot 12911 df-base 12913 df-ghm 13652 |
| This theorem is referenced by: dfrhm2 13991 |
| Copyright terms: Public domain | W3C validator |