ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpid2 GIF version

Theorem isgrpid2 13242
Description: Properties showing that an element 𝑍 is the identity element of a group. (Contributed by NM, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinveu.b 𝐵 = (Base‘𝐺)
grpinveu.p + = (+g𝐺)
grpinveu.o 0 = (0g𝐺)
Assertion
Ref Expression
isgrpid2 (𝐺 ∈ Grp → ((𝑍𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍))

Proof of Theorem isgrpid2
StepHypRef Expression
1 grpinveu.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpinveu.p . . . . 5 + = (+g𝐺)
3 grpinveu.o . . . . 5 0 = (0g𝐺)
41, 2, 3grpid 13241 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((𝑍 + 𝑍) = 𝑍0 = 𝑍))
54biimpd 144 . . 3 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((𝑍 + 𝑍) = 𝑍0 = 𝑍))
65expimpd 363 . 2 (𝐺 ∈ Grp → ((𝑍𝐵 ∧ (𝑍 + 𝑍) = 𝑍) → 0 = 𝑍))
71, 3grpidcl 13231 . . . 4 (𝐺 ∈ Grp → 0𝐵)
81, 2, 3grplid 13233 . . . . 5 ((𝐺 ∈ Grp ∧ 0𝐵) → ( 0 + 0 ) = 0 )
97, 8mpdan 421 . . . 4 (𝐺 ∈ Grp → ( 0 + 0 ) = 0 )
107, 9jca 306 . . 3 (𝐺 ∈ Grp → ( 0𝐵 ∧ ( 0 + 0 ) = 0 ))
11 eleq1 2259 . . . 4 ( 0 = 𝑍 → ( 0𝐵𝑍𝐵))
12 id 19 . . . . . 6 ( 0 = 𝑍0 = 𝑍)
1312, 12oveq12d 5943 . . . . 5 ( 0 = 𝑍 → ( 0 + 0 ) = (𝑍 + 𝑍))
1413, 12eqeq12d 2211 . . . 4 ( 0 = 𝑍 → (( 0 + 0 ) = 0 ↔ (𝑍 + 𝑍) = 𝑍))
1511, 14anbi12d 473 . . 3 ( 0 = 𝑍 → (( 0𝐵 ∧ ( 0 + 0 ) = 0 ) ↔ (𝑍𝐵 ∧ (𝑍 + 𝑍) = 𝑍)))
1610, 15syl5ibcom 155 . 2 (𝐺 ∈ Grp → ( 0 = 𝑍 → (𝑍𝐵 ∧ (𝑍 + 𝑍) = 𝑍)))
176, 16impbid 129 1 (𝐺 ∈ Grp → ((𝑍𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  0gc0g 12958  Grpcgrp 13202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator