| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isgrpid2 | GIF version | ||
| Description: Properties showing that an element 𝑍 is the identity element of a group. (Contributed by NM, 7-Aug-2013.) |
| Ref | Expression |
|---|---|
| grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinveu.p | ⊢ + = (+g‘𝐺) |
| grpinveu.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| isgrpid2 | ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinveu.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 3 | grpinveu.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | grpid 13171 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑍) = 𝑍 ↔ 0 = 𝑍)) |
| 5 | 4 | biimpd 144 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑍) = 𝑍 → 0 = 𝑍)) |
| 6 | 5 | expimpd 363 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) → 0 = 𝑍)) |
| 7 | 1, 3 | grpidcl 13161 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 8 | 1, 2, 3 | grplid 13163 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 + 0 ) = 0 ) |
| 9 | 7, 8 | mpdan 421 | . . . 4 ⊢ (𝐺 ∈ Grp → ( 0 + 0 ) = 0 ) |
| 10 | 7, 9 | jca 306 | . . 3 ⊢ (𝐺 ∈ Grp → ( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 )) |
| 11 | eleq1 2259 | . . . 4 ⊢ ( 0 = 𝑍 → ( 0 ∈ 𝐵 ↔ 𝑍 ∈ 𝐵)) | |
| 12 | id 19 | . . . . . 6 ⊢ ( 0 = 𝑍 → 0 = 𝑍) | |
| 13 | 12, 12 | oveq12d 5940 | . . . . 5 ⊢ ( 0 = 𝑍 → ( 0 + 0 ) = (𝑍 + 𝑍)) |
| 14 | 13, 12 | eqeq12d 2211 | . . . 4 ⊢ ( 0 = 𝑍 → (( 0 + 0 ) = 0 ↔ (𝑍 + 𝑍) = 𝑍)) |
| 15 | 11, 14 | anbi12d 473 | . . 3 ⊢ ( 0 = 𝑍 → (( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 ) ↔ (𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍))) |
| 16 | 10, 15 | syl5ibcom 155 | . 2 ⊢ (𝐺 ∈ Grp → ( 0 = 𝑍 → (𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍))) |
| 17 | 6, 16 | impbid 129 | 1 ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 0gc0g 12927 Grpcgrp 13132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |