![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ixxex | GIF version |
Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
ixx.1 | β’ π = (π₯ β β*, π¦ β β* β¦ {π§ β β* β£ (π₯π π§ β§ π§ππ¦)}) |
Ref | Expression |
---|---|
ixxex | β’ π β V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrex 9858 | . . . 4 β’ β* β V | |
2 | 1, 1 | xpex 4743 | . . 3 β’ (β* Γ β*) β V |
3 | 1 | pwex 4185 | . . 3 β’ π« β* β V |
4 | 2, 3 | xpex 4743 | . 2 β’ ((β* Γ β*) Γ π« β*) β V |
5 | ixx.1 | . . . 4 β’ π = (π₯ β β*, π¦ β β* β¦ {π§ β β* β£ (π₯π π§ β§ π§ππ¦)}) | |
6 | 5 | ixxf 9900 | . . 3 β’ π:(β* Γ β*)βΆπ« β* |
7 | fssxp 5385 | . . 3 β’ (π:(β* Γ β*)βΆπ« β* β π β ((β* Γ β*) Γ π« β*)) | |
8 | 6, 7 | ax-mp 5 | . 2 β’ π β ((β* Γ β*) Γ π« β*) |
9 | 4, 8 | ssexi 4143 | 1 β’ π β V |
Colors of variables: wff set class |
Syntax hints: β§ wa 104 = wceq 1353 β wcel 2148 {crab 2459 Vcvv 2739 β wss 3131 π« cpw 3577 class class class wbr 4005 Γ cxp 4626 βΆwf 5214 β cmpo 5879 β*cxr 7993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-pnf 7996 df-mnf 7997 df-xr 7998 |
This theorem is referenced by: iooex 9909 |
Copyright terms: Public domain | W3C validator |