| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixxex | GIF version | ||
| Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| Ref | Expression |
|---|---|
| ixxex | ⊢ 𝑂 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrex 10013 | . . . 4 ⊢ ℝ* ∈ V | |
| 2 | 1, 1 | xpex 4808 | . . 3 ⊢ (ℝ* × ℝ*) ∈ V |
| 3 | 1 | pwex 4243 | . . 3 ⊢ 𝒫 ℝ* ∈ V |
| 4 | 2, 3 | xpex 4808 | . 2 ⊢ ((ℝ* × ℝ*) × 𝒫 ℝ*) ∈ V |
| 5 | ixx.1 | . . . 4 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 6 | 5 | ixxf 10055 | . . 3 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
| 7 | fssxp 5463 | . . 3 ⊢ (𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* → 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*)) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*) |
| 9 | 4, 8 | ssexi 4198 | 1 ⊢ 𝑂 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2178 {crab 2490 Vcvv 2776 ⊆ wss 3174 𝒫 cpw 3626 class class class wbr 4059 × cxp 4691 ⟶wf 5286 ∈ cmpo 5969 ℝ*cxr 8141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 |
| This theorem is referenced by: iooex 10064 |
| Copyright terms: Public domain | W3C validator |