ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxex GIF version

Theorem ixxex 10020
Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxex 𝑂 ∈ V
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxex
StepHypRef Expression
1 xrex 9977 . . . 4 * ∈ V
21, 1xpex 4789 . . 3 (ℝ* × ℝ*) ∈ V
31pwex 4226 . . 3 𝒫 ℝ* ∈ V
42, 3xpex 4789 . 2 ((ℝ* × ℝ*) × 𝒫 ℝ*) ∈ V
5 ixx.1 . . . 4 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
65ixxf 10019 . . 3 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
7 fssxp 5442 . . 3 (𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*))
86, 7ax-mp 5 . 2 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*)
94, 8ssexi 4181 1 𝑂 ∈ V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wcel 2175  {crab 2487  Vcvv 2771  wss 3165  𝒫 cpw 3615   class class class wbr 4043   × cxp 4672  wf 5266  cmpo 5945  *cxr 8105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110
This theorem is referenced by:  iooex  10028
  Copyright terms: Public domain W3C validator