ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elixx1 Unicode version

Theorem elixx1 10093
Description: Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
elixx1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B )  <->  ( C  e.  RR*  /\  A R C  /\  C S B ) ) )
Distinct variable groups:    x, y, z, A    x, C, y, z    x, B, y, z    x, R, y, z    x, S, y, z
Allowed substitution hints:    O( x, y, z)

Proof of Theorem elixx1
StepHypRef Expression
1 ixx.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21ixxval 10092 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  =  { z  e.  RR*  |  ( A R z  /\  z S B ) } )
32eleq2d 2299 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B )  <->  C  e.  { z  e.  RR*  |  ( A R z  /\  z S B ) } ) )
4 breq2 4087 . . . . 5  |-  ( z  =  C  ->  ( A R z  <->  A R C ) )
5 breq1 4086 . . . . 5  |-  ( z  =  C  ->  (
z S B  <->  C S B ) )
64, 5anbi12d 473 . . . 4  |-  ( z  =  C  ->  (
( A R z  /\  z S B )  <->  ( A R C  /\  C S B ) ) )
76elrab 2959 . . 3  |-  ( C  e.  { z  e. 
RR*  |  ( A R z  /\  z S B ) }  <->  ( C  e.  RR*  /\  ( A R C  /\  C S B ) ) )
8 3anass 1006 . . 3  |-  ( ( C  e.  RR*  /\  A R C  /\  C S B )  <->  ( C  e.  RR*  /\  ( A R C  /\  C S B ) ) )
97, 8bitr4i 187 . 2  |-  ( C  e.  { z  e. 
RR*  |  ( A R z  /\  z S B ) }  <->  ( C  e.  RR*  /\  A R C  /\  C S B ) )
103, 9bitrdi 196 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B )  <->  ( C  e.  RR*  /\  A R C  /\  C S B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512   class class class wbr 4083  (class class class)co 6001    e. cmpo 6003   RR*cxr 8180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185
This theorem is referenced by:  elixx3g  10097  ixxssixx  10098  ixxdisj  10099  ixxss1  10100  ixxss2  10101  ixxss12  10102  elioo1  10107  elioc1  10118  elico1  10119  elicc1  10120
  Copyright terms: Public domain W3C validator