ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elixx1 Unicode version

Theorem elixx1 9854
Description: Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
elixx1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B )  <->  ( C  e.  RR*  /\  A R C  /\  C S B ) ) )
Distinct variable groups:    x, y, z, A    x, C, y, z    x, B, y, z    x, R, y, z    x, S, y, z
Allowed substitution hints:    O( x, y, z)

Proof of Theorem elixx1
StepHypRef Expression
1 ixx.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21ixxval 9853 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  =  { z  e.  RR*  |  ( A R z  /\  z S B ) } )
32eleq2d 2240 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B )  <->  C  e.  { z  e.  RR*  |  ( A R z  /\  z S B ) } ) )
4 breq2 3993 . . . . 5  |-  ( z  =  C  ->  ( A R z  <->  A R C ) )
5 breq1 3992 . . . . 5  |-  ( z  =  C  ->  (
z S B  <->  C S B ) )
64, 5anbi12d 470 . . . 4  |-  ( z  =  C  ->  (
( A R z  /\  z S B )  <->  ( A R C  /\  C S B ) ) )
76elrab 2886 . . 3  |-  ( C  e.  { z  e. 
RR*  |  ( A R z  /\  z S B ) }  <->  ( C  e.  RR*  /\  ( A R C  /\  C S B ) ) )
8 3anass 977 . . 3  |-  ( ( C  e.  RR*  /\  A R C  /\  C S B )  <->  ( C  e.  RR*  /\  ( A R C  /\  C S B ) ) )
97, 8bitr4i 186 . 2  |-  ( C  e.  { z  e. 
RR*  |  ( A R z  /\  z S B ) }  <->  ( C  e.  RR*  /\  A R C  /\  C S B ) )
103, 9bitrdi 195 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B )  <->  ( C  e.  RR*  /\  A R C  /\  C S B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   {crab 2452   class class class wbr 3989  (class class class)co 5853    e. cmpo 5855   RR*cxr 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958
This theorem is referenced by:  elixx3g  9858  ixxssixx  9859  ixxdisj  9860  ixxss1  9861  ixxss2  9862  ixxss12  9863  elioo1  9868  elioc1  9879  elico1  9880  elicc1  9881
  Copyright terms: Public domain W3C validator