Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > leadd1 | Unicode version |
Description: Addition to both sides of 'less than or equal to'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 18-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leadd1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd1 8348 | . . . 4 | |
2 | 1 | 3com12 1202 | . . 3 |
3 | 2 | notbid 662 | . 2 |
4 | simp1 992 | . . 3 | |
5 | simp2 993 | . . 3 | |
6 | 4, 5 | lenltd 8037 | . 2 |
7 | simp3 994 | . . . 4 | |
8 | 4, 7 | readdcld 7949 | . . 3 |
9 | 5, 7 | readdcld 7949 | . . 3 |
10 | 8, 9 | lenltd 8037 | . 2 |
11 | 3, 6, 10 | 3bitr4d 219 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 w3a 973 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 caddc 7777 clt 7954 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-iota 5160 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: leadd2 8350 lesubadd 8353 leaddsub 8357 le2add 8363 leadd1i 8422 leadd1d 8458 zleltp1 9267 eluzp1p1 9512 eluzaddi 9513 icoshft 9947 iccshftr 9951 fzen 9999 fzaddel 10015 fznatpl1 10032 fldiv4p1lem1div2 10261 faclbnd6 10678 |
Copyright terms: Public domain | W3C validator |