Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > leadd1 | Unicode version |
Description: Addition to both sides of 'less than or equal to'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 18-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leadd1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd1 8298 | . . . 4 | |
2 | 1 | 3com12 1189 | . . 3 |
3 | 2 | notbid 657 | . 2 |
4 | simp1 982 | . . 3 | |
5 | simp2 983 | . . 3 | |
6 | 4, 5 | lenltd 7987 | . 2 |
7 | simp3 984 | . . . 4 | |
8 | 4, 7 | readdcld 7901 | . . 3 |
9 | 5, 7 | readdcld 7901 | . . 3 |
10 | 8, 9 | lenltd 7987 | . 2 |
11 | 3, 6, 10 | 3bitr4d 219 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 w3a 963 wcel 2128 class class class wbr 3965 (class class class)co 5821 cr 7725 caddc 7729 clt 7906 cle 7907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-i2m1 7831 ax-0id 7834 ax-rnegex 7835 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4591 df-cnv 4593 df-iota 5134 df-fv 5177 df-ov 5824 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 |
This theorem is referenced by: leadd2 8300 lesubadd 8303 leaddsub 8307 le2add 8313 leadd1i 8372 leadd1d 8408 zleltp1 9216 eluzp1p1 9458 eluzaddi 9459 icoshft 9887 iccshftr 9891 fzen 9938 fzaddel 9954 fznatpl1 9971 fldiv4p1lem1div2 10197 faclbnd6 10611 |
Copyright terms: Public domain | W3C validator |