| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > leadd1 | Unicode version | ||
| Description: Addition to both sides of 'less than or equal to'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 18-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leadd1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd1 8537 |
. . . 4
| |
| 2 | 1 | 3com12 1210 |
. . 3
|
| 3 | 2 | notbid 669 |
. 2
|
| 4 | simp1 1000 |
. . 3
| |
| 5 | simp2 1001 |
. . 3
| |
| 6 | 4, 5 | lenltd 8225 |
. 2
|
| 7 | simp3 1002 |
. . . 4
| |
| 8 | 4, 7 | readdcld 8137 |
. . 3
|
| 9 | 5, 7 | readdcld 8137 |
. . 3
|
| 10 | 8, 9 | lenltd 8225 |
. 2
|
| 11 | 3, 6, 10 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: leadd2 8539 lesubadd 8542 leaddsub 8546 le2add 8552 leadd1i 8611 leadd1d 8647 zleltp1 9463 eluzp1p1 9709 eluzaddi 9710 icoshft 10147 iccshftr 10151 fzen 10200 fzaddel 10216 fznatpl1 10233 fldiv4p1lem1div2 10485 faclbnd6 10926 |
| Copyright terms: Public domain | W3C validator |