ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leadd1 Unicode version

Theorem leadd1 8349
Description: Addition to both sides of 'less than or equal to'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 18-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
leadd1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( A  +  C )  <_  ( B  +  C )
) )

Proof of Theorem leadd1
StepHypRef Expression
1 ltadd1 8348 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  <->  ( B  +  C )  <  ( A  +  C )
) )
213com12 1202 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  <->  ( B  +  C )  <  ( A  +  C )
) )
32notbid 662 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  B  <  A  <->  -.  ( B  +  C )  <  ( A  +  C
) ) )
4 simp1 992 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
5 simp2 993 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
64, 5lenltd 8037 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
7 simp3 994 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
84, 7readdcld 7949 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
95, 7readdcld 7949 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
108, 9lenltd 8037 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  <_  ( B  +  C )  <->  -.  ( B  +  C )  <  ( A  +  C
) ) )
113, 6, 103bitr4d 219 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( A  +  C )  <_  ( B  +  C )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    /\ w3a 973    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   RRcr 7773    + caddc 7777    < clt 7954    <_ cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-iota 5160  df-fv 5206  df-ov 5856  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960
This theorem is referenced by:  leadd2  8350  lesubadd  8353  leaddsub  8357  le2add  8363  leadd1i  8422  leadd1d  8458  zleltp1  9267  eluzp1p1  9512  eluzaddi  9513  icoshft  9947  iccshftr  9951  fzen  9999  fzaddel  10015  fznatpl1  10032  fldiv4p1lem1div2  10261  faclbnd6  10678
  Copyright terms: Public domain W3C validator