ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leadd1 Unicode version

Theorem leadd1 8299
Description: Addition to both sides of 'less than or equal to'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 18-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
leadd1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( A  +  C )  <_  ( B  +  C )
) )

Proof of Theorem leadd1
StepHypRef Expression
1 ltadd1 8298 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  <->  ( B  +  C )  <  ( A  +  C )
) )
213com12 1189 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  <->  ( B  +  C )  <  ( A  +  C )
) )
32notbid 657 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  B  <  A  <->  -.  ( B  +  C )  <  ( A  +  C
) ) )
4 simp1 982 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
5 simp2 983 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
64, 5lenltd 7987 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
7 simp3 984 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
84, 7readdcld 7901 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
95, 7readdcld 7901 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
108, 9lenltd 7987 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  <_  ( B  +  C )  <->  -.  ( B  +  C )  <  ( A  +  C
) ) )
113, 6, 103bitr4d 219 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( A  +  C )  <_  ( B  +  C )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    /\ w3a 963    e. wcel 2128   class class class wbr 3965  (class class class)co 5821   RRcr 7725    + caddc 7729    < clt 7906    <_ cle 7907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-i2m1 7831  ax-0id 7834  ax-rnegex 7835  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4591  df-cnv 4593  df-iota 5134  df-fv 5177  df-ov 5824  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912
This theorem is referenced by:  leadd2  8300  lesubadd  8303  leaddsub  8307  le2add  8313  leadd1i  8372  leadd1d  8408  zleltp1  9216  eluzp1p1  9458  eluzaddi  9459  icoshft  9887  iccshftr  9891  fzen  9938  fzaddel  9954  fznatpl1  9971  fldiv4p1lem1div2  10197  faclbnd6  10611
  Copyright terms: Public domain W3C validator