ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsnel6 Unicode version

Theorem lspsnel6 14372
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lspsnel5.v  |-  V  =  ( Base `  W
)
lspsnel5.s  |-  S  =  ( LSubSp `  W )
lspsnel5.n  |-  N  =  ( LSpan `  W )
lspsnel5.w  |-  ( ph  ->  W  e.  LMod )
lspsnel5.a  |-  ( ph  ->  U  e.  S )
Assertion
Ref Expression
lspsnel6  |-  ( ph  ->  ( X  e.  U  <->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) ) )

Proof of Theorem lspsnel6
StepHypRef Expression
1 lspsnel5.w . . . . 5  |-  ( ph  ->  W  e.  LMod )
21adantr 276 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  W  e.  LMod )
3 lspsnel5.a . . . . 5  |-  ( ph  ->  U  e.  S )
43adantr 276 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  U  e.  S )
5 simpr 110 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  X  e.  U )
6 lspsnel5.v . . . . 5  |-  V  =  ( Base `  W
)
7 lspsnel5.s . . . . 5  |-  S  =  ( LSubSp `  W )
86, 7lsselg 14325 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  X  e.  V )
92, 4, 5, 8syl3anc 1271 . . 3  |-  ( (
ph  /\  X  e.  U )  ->  X  e.  V )
10 lspsnel5.n . . . . 5  |-  N  =  ( LSpan `  W )
117, 10lspsnss 14368 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  ( N `  { X } )  C_  U
)
122, 4, 5, 11syl3anc 1271 . . 3  |-  ( (
ph  /\  X  e.  U )  ->  ( N `  { X } )  C_  U
)
139, 12jca 306 . 2  |-  ( (
ph  /\  X  e.  U )  ->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) )
146, 10lspsnid 14371 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
151, 14sylan 283 . . . 4  |-  ( (
ph  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
16 ssel 3218 . . . 4  |-  ( ( N `  { X } )  C_  U  ->  ( X  e.  ( N `  { X } )  ->  X  e.  U ) )
1715, 16syl5com 29 . . 3  |-  ( (
ph  /\  X  e.  V )  ->  (
( N `  { X } )  C_  U  ->  X  e.  U ) )
1817impr 379 . 2  |-  ( (
ph  /\  ( X  e.  V  /\  ( N `  { X } )  C_  U
) )  ->  X  e.  U )
1913, 18impbida 598 1  |-  ( ph  ->  ( X  e.  U  <->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   {csn 3666   ` cfv 5318   Basecbs 13032   LModclmod 14251   LSubSpclss 14316   LSpanclspn 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mulr 13124  df-sca 13126  df-vsca 13127  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-lmod 14253  df-lssm 14317  df-lsp 14351
This theorem is referenced by:  lspsnel5  14373
  Copyright terms: Public domain W3C validator