ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsnel6 Unicode version

Theorem lspsnel6 14170
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lspsnel5.v  |-  V  =  ( Base `  W
)
lspsnel5.s  |-  S  =  ( LSubSp `  W )
lspsnel5.n  |-  N  =  ( LSpan `  W )
lspsnel5.w  |-  ( ph  ->  W  e.  LMod )
lspsnel5.a  |-  ( ph  ->  U  e.  S )
Assertion
Ref Expression
lspsnel6  |-  ( ph  ->  ( X  e.  U  <->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) ) )

Proof of Theorem lspsnel6
StepHypRef Expression
1 lspsnel5.w . . . . 5  |-  ( ph  ->  W  e.  LMod )
21adantr 276 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  W  e.  LMod )
3 lspsnel5.a . . . . 5  |-  ( ph  ->  U  e.  S )
43adantr 276 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  U  e.  S )
5 simpr 110 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  X  e.  U )
6 lspsnel5.v . . . . 5  |-  V  =  ( Base `  W
)
7 lspsnel5.s . . . . 5  |-  S  =  ( LSubSp `  W )
86, 7lsselg 14123 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  X  e.  V )
92, 4, 5, 8syl3anc 1250 . . 3  |-  ( (
ph  /\  X  e.  U )  ->  X  e.  V )
10 lspsnel5.n . . . . 5  |-  N  =  ( LSpan `  W )
117, 10lspsnss 14166 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  ( N `  { X } )  C_  U
)
122, 4, 5, 11syl3anc 1250 . . 3  |-  ( (
ph  /\  X  e.  U )  ->  ( N `  { X } )  C_  U
)
139, 12jca 306 . 2  |-  ( (
ph  /\  X  e.  U )  ->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) )
146, 10lspsnid 14169 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
151, 14sylan 283 . . . 4  |-  ( (
ph  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
16 ssel 3187 . . . 4  |-  ( ( N `  { X } )  C_  U  ->  ( X  e.  ( N `  { X } )  ->  X  e.  U ) )
1715, 16syl5com 29 . . 3  |-  ( (
ph  /\  X  e.  V )  ->  (
( N `  { X } )  C_  U  ->  X  e.  U ) )
1817impr 379 . 2  |-  ( (
ph  /\  ( X  e.  V  /\  ( N `  { X } )  C_  U
) )  ->  X  e.  U )
1913, 18impbida 596 1  |-  ( ph  ->  ( X  e.  U  <->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    C_ wss 3166   {csn 3633   ` cfv 5271   Basecbs 12832   LModclmod 14049   LSubSpclss 14114   LSpanclspn 14148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-lmod 14051  df-lssm 14115  df-lsp 14149
This theorem is referenced by:  lspsnel5  14171
  Copyright terms: Public domain W3C validator