ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsnel6 Unicode version

Theorem lspsnel6 13907
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lspsnel5.v  |-  V  =  ( Base `  W
)
lspsnel5.s  |-  S  =  ( LSubSp `  W )
lspsnel5.n  |-  N  =  ( LSpan `  W )
lspsnel5.w  |-  ( ph  ->  W  e.  LMod )
lspsnel5.a  |-  ( ph  ->  U  e.  S )
Assertion
Ref Expression
lspsnel6  |-  ( ph  ->  ( X  e.  U  <->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) ) )

Proof of Theorem lspsnel6
StepHypRef Expression
1 lspsnel5.w . . . . 5  |-  ( ph  ->  W  e.  LMod )
21adantr 276 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  W  e.  LMod )
3 lspsnel5.a . . . . 5  |-  ( ph  ->  U  e.  S )
43adantr 276 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  U  e.  S )
5 simpr 110 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  X  e.  U )
6 lspsnel5.v . . . . 5  |-  V  =  ( Base `  W
)
7 lspsnel5.s . . . . 5  |-  S  =  ( LSubSp `  W )
86, 7lsselg 13860 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  X  e.  V )
92, 4, 5, 8syl3anc 1249 . . 3  |-  ( (
ph  /\  X  e.  U )  ->  X  e.  V )
10 lspsnel5.n . . . . 5  |-  N  =  ( LSpan `  W )
117, 10lspsnss 13903 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  ( N `  { X } )  C_  U
)
122, 4, 5, 11syl3anc 1249 . . 3  |-  ( (
ph  /\  X  e.  U )  ->  ( N `  { X } )  C_  U
)
139, 12jca 306 . 2  |-  ( (
ph  /\  X  e.  U )  ->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) )
146, 10lspsnid 13906 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
151, 14sylan 283 . . . 4  |-  ( (
ph  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
16 ssel 3174 . . . 4  |-  ( ( N `  { X } )  C_  U  ->  ( X  e.  ( N `  { X } )  ->  X  e.  U ) )
1715, 16syl5com 29 . . 3  |-  ( (
ph  /\  X  e.  V )  ->  (
( N `  { X } )  C_  U  ->  X  e.  U ) )
1817impr 379 . 2  |-  ( (
ph  /\  ( X  e.  V  /\  ( N `  { X } )  C_  U
) )  ->  X  e.  U )
1913, 18impbida 596 1  |-  ( ph  ->  ( X  e.  U  <->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    C_ wss 3154   {csn 3619   ` cfv 5255   Basecbs 12621   LModclmod 13786   LSubSpclss 13851   LSpanclspn 13885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-lmod 13788  df-lssm 13852  df-lsp 13886
This theorem is referenced by:  lspsnel5  13908
  Copyright terms: Public domain W3C validator