ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsnel6 Unicode version

Theorem lspsnel6 13904
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lspsnel5.v  |-  V  =  ( Base `  W
)
lspsnel5.s  |-  S  =  ( LSubSp `  W )
lspsnel5.n  |-  N  =  ( LSpan `  W )
lspsnel5.w  |-  ( ph  ->  W  e.  LMod )
lspsnel5.a  |-  ( ph  ->  U  e.  S )
Assertion
Ref Expression
lspsnel6  |-  ( ph  ->  ( X  e.  U  <->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) ) )

Proof of Theorem lspsnel6
StepHypRef Expression
1 lspsnel5.w . . . . 5  |-  ( ph  ->  W  e.  LMod )
21adantr 276 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  W  e.  LMod )
3 lspsnel5.a . . . . 5  |-  ( ph  ->  U  e.  S )
43adantr 276 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  U  e.  S )
5 simpr 110 . . . 4  |-  ( (
ph  /\  X  e.  U )  ->  X  e.  U )
6 lspsnel5.v . . . . 5  |-  V  =  ( Base `  W
)
7 lspsnel5.s . . . . 5  |-  S  =  ( LSubSp `  W )
86, 7lsselg 13857 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  X  e.  V )
92, 4, 5, 8syl3anc 1249 . . 3  |-  ( (
ph  /\  X  e.  U )  ->  X  e.  V )
10 lspsnel5.n . . . . 5  |-  N  =  ( LSpan `  W )
117, 10lspsnss 13900 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  ( N `  { X } )  C_  U
)
122, 4, 5, 11syl3anc 1249 . . 3  |-  ( (
ph  /\  X  e.  U )  ->  ( N `  { X } )  C_  U
)
139, 12jca 306 . 2  |-  ( (
ph  /\  X  e.  U )  ->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) )
146, 10lspsnid 13903 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
151, 14sylan 283 . . . 4  |-  ( (
ph  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
16 ssel 3173 . . . 4  |-  ( ( N `  { X } )  C_  U  ->  ( X  e.  ( N `  { X } )  ->  X  e.  U ) )
1715, 16syl5com 29 . . 3  |-  ( (
ph  /\  X  e.  V )  ->  (
( N `  { X } )  C_  U  ->  X  e.  U ) )
1817impr 379 . 2  |-  ( (
ph  /\  ( X  e.  V  /\  ( N `  { X } )  C_  U
) )  ->  X  e.  U )
1913, 18impbida 596 1  |-  ( ph  ->  ( X  e.  U  <->  ( X  e.  V  /\  ( N `  { X } )  C_  U
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    C_ wss 3153   {csn 3618   ` cfv 5254   Basecbs 12618   LModclmod 13783   LSubSpclss 13848   LSpanclspn 13882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-lmod 13785  df-lssm 13849  df-lsp 13883
This theorem is referenced by:  lspsnel5  13905
  Copyright terms: Public domain W3C validator