ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsselg Unicode version

Theorem lsselg 13702
Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssss.v  |-  V  =  ( Base `  W
)
lssss.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lsselg  |-  ( ( W  e.  C  /\  U  e.  S  /\  X  e.  U )  ->  X  e.  V )

Proof of Theorem lsselg
StepHypRef Expression
1 lssss.v . . . 4  |-  V  =  ( Base `  W
)
2 lssss.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lssssg 13701 . . 3  |-  ( ( W  e.  C  /\  U  e.  S )  ->  U  C_  V )
433adant3 1019 . 2  |-  ( ( W  e.  C  /\  U  e.  S  /\  X  e.  U )  ->  U  C_  V )
5 simp3 1001 . 2  |-  ( ( W  e.  C  /\  U  e.  S  /\  X  e.  U )  ->  X  e.  U )
64, 5sseldd 3171 1  |-  ( ( W  e.  C  /\  U  e.  S  /\  X  e.  U )  ->  X  e.  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2160    C_ wss 3144   ` cfv 5238   Basecbs 12523   LSubSpclss 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-cnex 7937  ax-resscn 7938  ax-1re 7940  ax-addrcl 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-iota 5199  df-fun 5240  df-fn 5241  df-fv 5246  df-ov 5903  df-inn 8955  df-ndx 12526  df-slot 12527  df-base 12529  df-lssm 13694
This theorem is referenced by:  lssvacl  13706  lssvsubcl  13707  lssvancl1  13708  lssvancl2  13709  lss0cl  13710  lssvscl  13716  lssvnegcl  13717  lspsnel6  13749  lspsnel5a  13751  lssats2  13755
  Copyright terms: Public domain W3C validator