| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspsnel6 | GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lspsnel5.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsnel5.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspsnel5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspsnel5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lspsnel5.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| lspsnel6 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnel5.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LMod) |
| 3 | lspsnel5.a | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
| 5 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 6 | lspsnel5.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 7 | lspsnel5.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 8 | 6, 7 | lsselg 14319 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| 9 | 2, 4, 5, 8 | syl3anc 1271 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| 10 | lspsnel5.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 11 | 7, 10 | lspsnss 14362 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 12 | 2, 4, 5, 11 | syl3anc 1271 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 13 | 9, 12 | jca 306 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| 14 | 6, 10 | lspsnid 14365 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 15 | 1, 14 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 16 | ssel 3218 | . . . 4 ⊢ ((𝑁‘{𝑋}) ⊆ 𝑈 → (𝑋 ∈ (𝑁‘{𝑋}) → 𝑋 ∈ 𝑈)) | |
| 17 | 15, 16 | syl5com 29 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) ⊆ 𝑈 → 𝑋 ∈ 𝑈)) |
| 18 | 17 | impr 379 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) → 𝑋 ∈ 𝑈) |
| 19 | 13, 18 | impbida 598 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 {csn 3666 ‘cfv 5317 Basecbs 13027 LModclmod 14245 LSubSpclss 14310 LSpanclspn 14344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-sca 13121 df-vsca 13122 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-lmod 14247 df-lssm 14311 df-lsp 14345 |
| This theorem is referenced by: lspsnel5 14367 |
| Copyright terms: Public domain | W3C validator |