| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lspsnel6 | GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| lspsnel5.v | ⊢ 𝑉 = (Base‘𝑊) | 
| lspsnel5.s | ⊢ 𝑆 = (LSubSp‘𝑊) | 
| lspsnel5.n | ⊢ 𝑁 = (LSpan‘𝑊) | 
| lspsnel5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) | 
| lspsnel5.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) | 
| Ref | Expression | 
|---|---|
| lspsnel6 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspsnel5.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LMod) | 
| 3 | lspsnel5.a | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) | 
| 5 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 6 | lspsnel5.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 7 | lspsnel5.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 8 | 6, 7 | lsselg 13917 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) | 
| 9 | 2, 4, 5, 8 | syl3anc 1249 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) | 
| 10 | lspsnel5.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 11 | 7, 10 | lspsnss 13960 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) | 
| 12 | 2, 4, 5, 11 | syl3anc 1249 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) | 
| 13 | 9, 12 | jca 306 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) | 
| 14 | 6, 10 | lspsnid 13963 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) | 
| 15 | 1, 14 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) | 
| 16 | ssel 3177 | . . . 4 ⊢ ((𝑁‘{𝑋}) ⊆ 𝑈 → (𝑋 ∈ (𝑁‘{𝑋}) → 𝑋 ∈ 𝑈)) | |
| 17 | 15, 16 | syl5com 29 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) ⊆ 𝑈 → 𝑋 ∈ 𝑈)) | 
| 18 | 17 | impr 379 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) → 𝑋 ∈ 𝑈) | 
| 19 | 13, 18 | impbida 596 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 {csn 3622 ‘cfv 5258 Basecbs 12678 LModclmod 13843 LSubSpclss 13908 LSpanclspn 13942 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-lmod 13845 df-lssm 13909 df-lsp 13943 | 
| This theorem is referenced by: lspsnel5 13965 | 
| Copyright terms: Public domain | W3C validator |