| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lssex | GIF version | ||
| Description: Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| lssex | ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 12736 | . . . . . 6 ⊢ Base Fn V | |
| 2 | vex 2766 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → 𝑤 ∈ V) |
| 4 | funfvex 5575 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑤 ∈ dom Base) → (Base‘𝑤) ∈ V) | |
| 5 | 4 | funfni 5358 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑤 ∈ V) → (Base‘𝑤) ∈ V) |
| 6 | 1, 3, 5 | sylancr 414 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (Base‘𝑤) ∈ V) |
| 7 | 6 | pwexd 4214 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝒫 (Base‘𝑤) ∈ V) |
| 8 | rabexg 4176 | . . . 4 ⊢ (𝒫 (Base‘𝑤) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝑊 ∈ 𝑉 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) |
| 10 | 9 | alrimiv 1888 | . 2 ⊢ (𝑊 ∈ 𝑉 → ∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) |
| 11 | df-lssm 13909 | . . 3 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
| 12 | 11 | mptfvex 5647 | . 2 ⊢ ((∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V ∧ 𝑊 ∈ 𝑉) → (LSubSp‘𝑊) ∈ V) |
| 13 | 10, 12 | mpancom 422 | 1 ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 {crab 2479 Vcvv 2763 𝒫 cpw 3605 Fn wfn 5253 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 Scalarcsca 12758 ·𝑠 cvsca 12759 LSubSpclss 13908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-lssm 13909 |
| This theorem is referenced by: lidlex 14029 |
| Copyright terms: Public domain | W3C validator |