ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssex GIF version

Theorem lssex 14149
Description: Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.)
Assertion
Ref Expression
lssex (𝑊𝑉 → (LSubSp‘𝑊) ∈ V)

Proof of Theorem lssex
Dummy variables 𝑤 𝑎 𝑏 𝑗 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12923 . . . . . 6 Base Fn V
2 vex 2775 . . . . . . 7 𝑤 ∈ V
32a1i 9 . . . . . 6 (𝑊𝑉𝑤 ∈ V)
4 funfvex 5595 . . . . . . 7 ((Fun Base ∧ 𝑤 ∈ dom Base) → (Base‘𝑤) ∈ V)
54funfni 5377 . . . . . 6 ((Base Fn V ∧ 𝑤 ∈ V) → (Base‘𝑤) ∈ V)
61, 3, 5sylancr 414 . . . . 5 (𝑊𝑉 → (Base‘𝑤) ∈ V)
76pwexd 4226 . . . 4 (𝑊𝑉 → 𝒫 (Base‘𝑤) ∈ V)
8 rabexg 4188 . . . 4 (𝒫 (Base‘𝑤) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V)
97, 8syl 14 . . 3 (𝑊𝑉 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V)
109alrimiv 1897 . 2 (𝑊𝑉 → ∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V)
11 df-lssm 14148 . . 3 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
1211mptfvex 5667 . 2 ((∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V ∧ 𝑊𝑉) → (LSubSp‘𝑊) ∈ V)
1310, 12mpancom 422 1 (𝑊𝑉 → (LSubSp‘𝑊) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371  wex 1515  wcel 2176  wral 2484  {crab 2488  Vcvv 2772  𝒫 cpw 3616   Fn wfn 5267  cfv 5272  (class class class)co 5946  Basecbs 12865  +gcplusg 12942  Scalarcsca 12945   ·𝑠 cvsca 12946  LSubSpclss 14147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-inn 9039  df-ndx 12868  df-slot 12869  df-base 12871  df-lssm 14148
This theorem is referenced by:  lidlex  14268
  Copyright terms: Public domain W3C validator