| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lssex | GIF version | ||
| Description: Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| lssex | ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 12923 | . . . . . 6 ⊢ Base Fn V | |
| 2 | vex 2775 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → 𝑤 ∈ V) |
| 4 | funfvex 5595 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑤 ∈ dom Base) → (Base‘𝑤) ∈ V) | |
| 5 | 4 | funfni 5377 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑤 ∈ V) → (Base‘𝑤) ∈ V) |
| 6 | 1, 3, 5 | sylancr 414 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (Base‘𝑤) ∈ V) |
| 7 | 6 | pwexd 4226 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝒫 (Base‘𝑤) ∈ V) |
| 8 | rabexg 4188 | . . . 4 ⊢ (𝒫 (Base‘𝑤) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝑊 ∈ 𝑉 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) |
| 10 | 9 | alrimiv 1897 | . 2 ⊢ (𝑊 ∈ 𝑉 → ∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) |
| 11 | df-lssm 14148 | . . 3 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
| 12 | 11 | mptfvex 5667 | . 2 ⊢ ((∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V ∧ 𝑊 ∈ 𝑉) → (LSubSp‘𝑊) ∈ V) |
| 13 | 10, 12 | mpancom 422 | 1 ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1515 ∈ wcel 2176 ∀wral 2484 {crab 2488 Vcvv 2772 𝒫 cpw 3616 Fn wfn 5267 ‘cfv 5272 (class class class)co 5946 Basecbs 12865 +gcplusg 12942 Scalarcsca 12945 ·𝑠 cvsca 12946 LSubSpclss 14147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-inn 9039 df-ndx 12868 df-slot 12869 df-base 12871 df-lssm 14148 |
| This theorem is referenced by: lidlex 14268 |
| Copyright terms: Public domain | W3C validator |