| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lssex | GIF version | ||
| Description: Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| lssex | ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 13005 | . . . . . 6 ⊢ Base Fn V | |
| 2 | vex 2779 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → 𝑤 ∈ V) |
| 4 | funfvex 5616 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑤 ∈ dom Base) → (Base‘𝑤) ∈ V) | |
| 5 | 4 | funfni 5395 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑤 ∈ V) → (Base‘𝑤) ∈ V) |
| 6 | 1, 3, 5 | sylancr 414 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (Base‘𝑤) ∈ V) |
| 7 | 6 | pwexd 4241 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝒫 (Base‘𝑤) ∈ V) |
| 8 | rabexg 4203 | . . . 4 ⊢ (𝒫 (Base‘𝑤) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝑊 ∈ 𝑉 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) |
| 10 | 9 | alrimiv 1898 | . 2 ⊢ (𝑊 ∈ 𝑉 → ∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) |
| 11 | df-lssm 14230 | . . 3 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
| 12 | 11 | mptfvex 5688 | . 2 ⊢ ((∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V ∧ 𝑊 ∈ 𝑉) → (LSubSp‘𝑊) ∈ V) |
| 13 | 10, 12 | mpancom 422 | 1 ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1516 ∈ wcel 2178 ∀wral 2486 {crab 2490 Vcvv 2776 𝒫 cpw 3626 Fn wfn 5285 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 +gcplusg 13024 Scalarcsca 13027 ·𝑠 cvsca 13028 LSubSpclss 14229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 df-lssm 14230 |
| This theorem is referenced by: lidlex 14350 |
| Copyright terms: Public domain | W3C validator |