ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssex GIF version

Theorem lssex 13687
Description: Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.)
Assertion
Ref Expression
lssex (𝑊𝑉 → (LSubSp‘𝑊) ∈ V)

Proof of Theorem lssex
Dummy variables 𝑤 𝑎 𝑏 𝑗 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12573 . . . . . 6 Base Fn V
2 vex 2755 . . . . . . 7 𝑤 ∈ V
32a1i 9 . . . . . 6 (𝑊𝑉𝑤 ∈ V)
4 funfvex 5551 . . . . . . 7 ((Fun Base ∧ 𝑤 ∈ dom Base) → (Base‘𝑤) ∈ V)
54funfni 5335 . . . . . 6 ((Base Fn V ∧ 𝑤 ∈ V) → (Base‘𝑤) ∈ V)
61, 3, 5sylancr 414 . . . . 5 (𝑊𝑉 → (Base‘𝑤) ∈ V)
76pwexd 4199 . . . 4 (𝑊𝑉 → 𝒫 (Base‘𝑤) ∈ V)
8 rabexg 4161 . . . 4 (𝒫 (Base‘𝑤) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V)
97, 8syl 14 . . 3 (𝑊𝑉 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V)
109alrimiv 1885 . 2 (𝑊𝑉 → ∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V)
11 df-lssm 13686 . . 3 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
1211mptfvex 5622 . 2 ((∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V ∧ 𝑊𝑉) → (LSubSp‘𝑊) ∈ V)
1310, 12mpancom 422 1 (𝑊𝑉 → (LSubSp‘𝑊) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362  wex 1503  wcel 2160  wral 2468  {crab 2472  Vcvv 2752  𝒫 cpw 3590   Fn wfn 5230  cfv 5235  (class class class)co 5897  Basecbs 12515  +gcplusg 12592  Scalarcsca 12595   ·𝑠 cvsca 12596  LSubSpclss 13685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-inn 8951  df-ndx 12518  df-slot 12519  df-base 12521  df-lssm 13686
This theorem is referenced by:  lidlex  13806
  Copyright terms: Public domain W3C validator