![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssex | GIF version |
Description: Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.) |
Ref | Expression |
---|---|
lssex | ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basfn 12573 | . . . . . 6 ⊢ Base Fn V | |
2 | vex 2755 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → 𝑤 ∈ V) |
4 | funfvex 5551 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑤 ∈ dom Base) → (Base‘𝑤) ∈ V) | |
5 | 4 | funfni 5335 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑤 ∈ V) → (Base‘𝑤) ∈ V) |
6 | 1, 3, 5 | sylancr 414 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (Base‘𝑤) ∈ V) |
7 | 6 | pwexd 4199 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝒫 (Base‘𝑤) ∈ V) |
8 | rabexg 4161 | . . . 4 ⊢ (𝒫 (Base‘𝑤) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ (𝑊 ∈ 𝑉 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) |
10 | 9 | alrimiv 1885 | . 2 ⊢ (𝑊 ∈ 𝑉 → ∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V) |
11 | df-lssm 13686 | . . 3 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
12 | 11 | mptfvex 5622 | . 2 ⊢ ((∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} ∈ V ∧ 𝑊 ∈ 𝑉) → (LSubSp‘𝑊) ∈ V) |
13 | 10, 12 | mpancom 422 | 1 ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1503 ∈ wcel 2160 ∀wral 2468 {crab 2472 Vcvv 2752 𝒫 cpw 3590 Fn wfn 5230 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 +gcplusg 12592 Scalarcsca 12595 ·𝑠 cvsca 12596 LSubSpclss 13685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7933 ax-resscn 7934 ax-1re 7936 ax-addrcl 7939 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-inn 8951 df-ndx 12518 df-slot 12519 df-base 12521 df-lssm 13686 |
This theorem is referenced by: lidlex 13806 |
Copyright terms: Public domain | W3C validator |