ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssex GIF version

Theorem lssex 14326
Description: Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.)
Assertion
Ref Expression
lssex (𝑊𝑉 → (LSubSp‘𝑊) ∈ V)

Proof of Theorem lssex
Dummy variables 𝑤 𝑎 𝑏 𝑗 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 13099 . . . . . 6 Base Fn V
2 vex 2802 . . . . . . 7 𝑤 ∈ V
32a1i 9 . . . . . 6 (𝑊𝑉𝑤 ∈ V)
4 funfvex 5646 . . . . . . 7 ((Fun Base ∧ 𝑤 ∈ dom Base) → (Base‘𝑤) ∈ V)
54funfni 5423 . . . . . 6 ((Base Fn V ∧ 𝑤 ∈ V) → (Base‘𝑤) ∈ V)
61, 3, 5sylancr 414 . . . . 5 (𝑊𝑉 → (Base‘𝑤) ∈ V)
76pwexd 4265 . . . 4 (𝑊𝑉 → 𝒫 (Base‘𝑤) ∈ V)
8 rabexg 4227 . . . 4 (𝒫 (Base‘𝑤) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V)
97, 8syl 14 . . 3 (𝑊𝑉 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V)
109alrimiv 1920 . 2 (𝑊𝑉 → ∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V)
11 df-lssm 14325 . . 3 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
1211mptfvex 5722 . 2 ((∀𝑤{𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} ∈ V ∧ 𝑊𝑉) → (LSubSp‘𝑊) ∈ V)
1310, 12mpancom 422 1 (𝑊𝑉 → (LSubSp‘𝑊) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393  wex 1538  wcel 2200  wral 2508  {crab 2512  Vcvv 2799  𝒫 cpw 3649   Fn wfn 5313  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  Scalarcsca 13121   ·𝑠 cvsca 13122  LSubSpclss 14324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-lssm 14325
This theorem is referenced by:  lidlex  14445
  Copyright terms: Public domain W3C validator