ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssuni Unicode version

Theorem lssuni 14096
Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lssss.v  |-  V  =  ( Base `  W
)
lssss.s  |-  S  =  ( LSubSp `  W )
lssuni.w  |-  ( ph  ->  W  e.  LMod )
Assertion
Ref Expression
lssuni  |-  ( ph  ->  U. S  =  V )

Proof of Theorem lssuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 lssuni.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 lssss.v . . . . . . 7  |-  V  =  ( Base `  W
)
3 lssss.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
42, 3lssssg 14093 . . . . . 6  |-  ( ( W  e.  LMod  /\  x  e.  S )  ->  x  C_  V )
54ralrimiva 2578 . . . . 5  |-  ( W  e.  LMod  ->  A. x  e.  S  x  C_  V
)
6 rabid2 2682 . . . . 5  |-  ( S  =  { x  e.  S  |  x  C_  V }  <->  A. x  e.  S  x  C_  V )
75, 6sylibr 134 . . . 4  |-  ( W  e.  LMod  ->  S  =  { x  e.  S  |  x  C_  V }
)
87unieqd 3860 . . 3  |-  ( W  e.  LMod  ->  U. S  =  U. { x  e.  S  |  x  C_  V } )
91, 8syl 14 . 2  |-  ( ph  ->  U. S  =  U. { x  e.  S  |  x  C_  V }
)
102, 3lss1 14095 . . 3  |-  ( W  e.  LMod  ->  V  e.  S )
11 unimax 3883 . . 3  |-  ( V  e.  S  ->  U. {
x  e.  S  |  x  C_  V }  =  V )
121, 10, 113syl 17 . 2  |-  ( ph  ->  U. { x  e.  S  |  x  C_  V }  =  V
)
139, 12eqtrd 2237 1  |-  ( ph  ->  U. S  =  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   A.wral 2483   {crab 2487    C_ wss 3165   U.cuni 3849   ` cfv 5270   Basecbs 12803   LModclmod 14020   LSubSpclss 14085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-mulr 12894  df-sca 12896  df-vsca 12897  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-lmod 14022  df-lssm 14086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator