ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusfeqg Unicode version

Theorem plusfeqg 12647
Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
plusffval.1  |-  B  =  ( Base `  G
)
plusffval.2  |-  .+  =  ( +g  `  G )
plusffval.3  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
plusfeqg  |-  ( ( G  e.  V  /\  .+  Fn  ( B  X.  B ) )  ->  .+^  =  .+  )

Proof of Theorem plusfeqg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusffval.1 . . . 4  |-  B  =  ( Base `  G
)
2 plusffval.2 . . . 4  |-  .+  =  ( +g  `  G )
3 plusffval.3 . . . 4  |-  .+^  =  ( +f `  G
)
41, 2, 3plusffvalg 12645 . . 3  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
54adantr 276 . 2  |-  ( ( G  e.  V  /\  .+  Fn  ( B  X.  B ) )  ->  .+^  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y ) ) )
6 fnovim 5973 . . 3  |-  (  .+  Fn  ( B  X.  B
)  ->  .+  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
76adantl 277 . 2  |-  ( ( G  e.  V  /\  .+  Fn  ( B  X.  B ) )  ->  .+  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y ) ) )
85, 7eqtr4d 2211 1  |-  ( ( G  e.  V  /\  .+  Fn  ( B  X.  B ) )  ->  .+^  =  .+  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146    X. cxp 4618    Fn wfn 5203   ` cfv 5208  (class class class)co 5865    e. cmpo 5867   Basecbs 12427   +g cplusg 12491   +fcplusf 12636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-inn 8891  df-ndx 12430  df-slot 12431  df-base 12433  df-plusf 12638
This theorem is referenced by:  mgmb1mgm1  12651  mndfo  12704
  Copyright terms: Public domain W3C validator