| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmb1mgm1 | GIF version | ||
| Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.) |
| Ref | Expression |
|---|---|
| mgmb1mgm1.b | ⊢ 𝐵 = (Base‘𝑀) |
| mgmb1mgm1.p | ⊢ + = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| mgmb1mgm1 | ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmb1mgm1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | eqid 2229 | . . . . . 6 ⊢ (+𝑓‘𝑀) = (+𝑓‘𝑀) | |
| 3 | 1, 2 | mgmplusf 13399 | . . . . 5 ⊢ (𝑀 ∈ Mgm → (+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵) |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵) |
| 5 | mgmb1mgm1.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
| 6 | 1, 5, 2 | plusfeqg 13397 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝑀) = + ) |
| 7 | 6 | feq1d 5460 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → ((+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵 ↔ + :(𝐵 × 𝐵)⟶𝐵)) |
| 8 | 4, 7 | mpbid 147 | . . 3 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
| 9 | 8 | 3adant2 1040 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
| 10 | simp2 1022 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → 𝑍 ∈ 𝐵) | |
| 11 | intopsn 13400 | . 2 ⊢ (( + :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) | |
| 12 | 9, 10, 11 | syl2anc 411 | 1 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {csn 3666 〈cop 3669 × cxp 4717 Fn wfn 5313 ⟶wf 5314 ‘cfv 5318 Basecbs 13032 +gcplusg 13110 +𝑓cplusf 13386 Mgmcmgm 13387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-plusf 13388 df-mgm 13389 |
| This theorem is referenced by: srg1zr 13950 |
| Copyright terms: Public domain | W3C validator |