ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmb1mgm1 GIF version

Theorem mgmb1mgm1 13011
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
Hypotheses
Ref Expression
mgmb1mgm1.b 𝐵 = (Base‘𝑀)
mgmb1mgm1.p + = (+g𝑀)
Assertion
Ref Expression
mgmb1mgm1 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))

Proof of Theorem mgmb1mgm1
StepHypRef Expression
1 mgmb1mgm1.b . . . . . 6 𝐵 = (Base‘𝑀)
2 eqid 2196 . . . . . 6 (+𝑓𝑀) = (+𝑓𝑀)
31, 2mgmplusf 13009 . . . . 5 (𝑀 ∈ Mgm → (+𝑓𝑀):(𝐵 × 𝐵)⟶𝐵)
43adantr 276 . . . 4 ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → (+𝑓𝑀):(𝐵 × 𝐵)⟶𝐵)
5 mgmb1mgm1.p . . . . . 6 + = (+g𝑀)
61, 5, 2plusfeqg 13007 . . . . 5 ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → (+𝑓𝑀) = + )
76feq1d 5394 . . . 4 ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → ((+𝑓𝑀):(𝐵 × 𝐵)⟶𝐵+ :(𝐵 × 𝐵)⟶𝐵))
84, 7mpbid 147 . . 3 ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵)
983adant2 1018 . 2 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵)
10 simp2 1000 . 2 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → 𝑍𝐵)
11 intopsn 13010 . 2 (( + :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
129, 10, 11syl2anc 411 1 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {csn 3622  cop 3625   × cxp 4661   Fn wfn 5253  wf 5254  cfv 5258  Basecbs 12678  +gcplusg 12755  +𝑓cplusf 12996  Mgmcmgm 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-plusf 12998  df-mgm 12999
This theorem is referenced by:  srg1zr  13543
  Copyright terms: Public domain W3C validator