| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmb1mgm1 | GIF version | ||
| Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.) |
| Ref | Expression |
|---|---|
| mgmb1mgm1.b | ⊢ 𝐵 = (Base‘𝑀) |
| mgmb1mgm1.p | ⊢ + = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| mgmb1mgm1 | ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmb1mgm1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | eqid 2205 | . . . . . 6 ⊢ (+𝑓‘𝑀) = (+𝑓‘𝑀) | |
| 3 | 1, 2 | mgmplusf 13198 | . . . . 5 ⊢ (𝑀 ∈ Mgm → (+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵) |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵) |
| 5 | mgmb1mgm1.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
| 6 | 1, 5, 2 | plusfeqg 13196 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝑀) = + ) |
| 7 | 6 | feq1d 5412 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → ((+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵 ↔ + :(𝐵 × 𝐵)⟶𝐵)) |
| 8 | 4, 7 | mpbid 147 | . . 3 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
| 9 | 8 | 3adant2 1019 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
| 10 | simp2 1001 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → 𝑍 ∈ 𝐵) | |
| 11 | intopsn 13199 | . 2 ⊢ (( + :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) | |
| 12 | 9, 10, 11 | syl2anc 411 | 1 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 {csn 3633 〈cop 3636 × cxp 4673 Fn wfn 5266 ⟶wf 5267 ‘cfv 5271 Basecbs 12832 +gcplusg 12909 +𝑓cplusf 13185 Mgmcmgm 13186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-plusf 13187 df-mgm 13188 |
| This theorem is referenced by: srg1zr 13749 |
| Copyright terms: Public domain | W3C validator |