Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mgmb1mgm1 | GIF version |
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.) |
Ref | Expression |
---|---|
mgmb1mgm1.b | ⊢ 𝐵 = (Base‘𝑀) |
mgmb1mgm1.p | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
mgmb1mgm1 | ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmb1mgm1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2165 | . . . . . 6 ⊢ (+𝑓‘𝑀) = (+𝑓‘𝑀) | |
3 | 1, 2 | mgmplusf 12597 | . . . . 5 ⊢ (𝑀 ∈ Mgm → (+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵) |
4 | 3 | adantr 274 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵) |
5 | mgmb1mgm1.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
6 | 1, 5, 2 | plusfeqg 12595 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝑀) = + ) |
7 | 6 | feq1d 5324 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → ((+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵 ↔ + :(𝐵 × 𝐵)⟶𝐵)) |
8 | 4, 7 | mpbid 146 | . . 3 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
9 | 8 | 3adant2 1006 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
10 | simp2 988 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → 𝑍 ∈ 𝐵) | |
11 | intopsn 12598 | . 2 ⊢ (( + :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) | |
12 | 9, 10, 11 | syl2anc 409 | 1 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 {csn 3576 〈cop 3579 × cxp 4602 Fn wfn 5183 ⟶wf 5184 ‘cfv 5188 Basecbs 12394 +gcplusg 12457 +𝑓cplusf 12584 Mgmcmgm 12585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-inn 8858 df-2 8916 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-plusf 12586 df-mgm 12587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |