![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgmb1mgm1 | GIF version |
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.) |
Ref | Expression |
---|---|
mgmb1mgm1.b | ⊢ 𝐵 = (Base‘𝑀) |
mgmb1mgm1.p | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
mgmb1mgm1 | ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmb1mgm1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2187 | . . . . . 6 ⊢ (+𝑓‘𝑀) = (+𝑓‘𝑀) | |
3 | 1, 2 | mgmplusf 12803 | . . . . 5 ⊢ (𝑀 ∈ Mgm → (+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵) |
4 | 3 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵) |
5 | mgmb1mgm1.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
6 | 1, 5, 2 | plusfeqg 12801 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝑀) = + ) |
7 | 6 | feq1d 5364 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → ((+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵 ↔ + :(𝐵 × 𝐵)⟶𝐵)) |
8 | 4, 7 | mpbid 147 | . . 3 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
9 | 8 | 3adant2 1017 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
10 | simp2 999 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → 𝑍 ∈ 𝐵) | |
11 | intopsn 12804 | . 2 ⊢ (( + :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})) | |
12 | 9, 10, 11 | syl2anc 411 | 1 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 {csn 3604 ⟨cop 3607 × cxp 4636 Fn wfn 5223 ⟶wf 5224 ‘cfv 5228 Basecbs 12475 +gcplusg 12550 +𝑓cplusf 12790 Mgmcmgm 12791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7915 ax-resscn 7916 ax-1re 7918 ax-addrcl 7921 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-inn 8933 df-2 8991 df-ndx 12478 df-slot 12479 df-base 12481 df-plusg 12563 df-plusf 12792 df-mgm 12793 |
This theorem is referenced by: srg1zr 13224 |
Copyright terms: Public domain | W3C validator |