ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipq2 Unicode version

Theorem mulpipq2 7433
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulpipq2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)

Proof of Theorem mulpipq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6220 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
2 xp1st 6220 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
3 mulclpi 7390 . . . 4  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 1st `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
41, 2, 3syl2an 289 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
5 xp2nd 6221 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
6 xp2nd 6221 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
7 mulclpi 7390 . . . 4  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
85, 6, 7syl2an 289 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
9 opexg 4258 . . 3  |-  ( ( ( ( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N.  /\  ( ( 2nd `  A )  .N  ( 2nd `  B
) )  e.  N. )  ->  <. ( ( 1st `  A )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>.  e.  _V )
104, 8, 9syl2anc 411 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  <. (
( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.  e.  _V )
11 fveq2 5555 . . . . 5  |-  ( x  =  A  ->  ( 1st `  x )  =  ( 1st `  A
) )
1211oveq1d 5934 . . . 4  |-  ( x  =  A  ->  (
( 1st `  x
)  .N  ( 1st `  y ) )  =  ( ( 1st `  A
)  .N  ( 1st `  y ) ) )
13 fveq2 5555 . . . . 5  |-  ( x  =  A  ->  ( 2nd `  x )  =  ( 2nd `  A
) )
1413oveq1d 5934 . . . 4  |-  ( x  =  A  ->  (
( 2nd `  x
)  .N  ( 2nd `  y ) )  =  ( ( 2nd `  A
)  .N  ( 2nd `  y ) ) )
1512, 14opeq12d 3813 . . 3  |-  ( x  =  A  ->  <. (
( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.  =  <. ( ( 1st `  A )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  y ) )
>. )
16 fveq2 5555 . . . . 5  |-  ( y  =  B  ->  ( 1st `  y )  =  ( 1st `  B
) )
1716oveq2d 5935 . . . 4  |-  ( y  =  B  ->  (
( 1st `  A
)  .N  ( 1st `  y ) )  =  ( ( 1st `  A
)  .N  ( 1st `  B ) ) )
18 fveq2 5555 . . . . 5  |-  ( y  =  B  ->  ( 2nd `  y )  =  ( 2nd `  B
) )
1918oveq2d 5935 . . . 4  |-  ( y  =  B  ->  (
( 2nd `  A
)  .N  ( 2nd `  y ) )  =  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) )
2017, 19opeq12d 3813 . . 3  |-  ( y  =  B  ->  <. (
( 1st `  A
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  y ) ) >.  =  <. ( ( 1st `  A )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )
21 df-mpq 7407 . . 3  |-  .pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.
)
2215, 20, 21ovmpog 6054 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  <. ( ( 1st `  A )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>.  e.  _V )  -> 
( A  .pQ  B
)  =  <. (
( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
2310, 22mpd3an3 1349 1  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   <.cop 3622    X. cxp 4658   ` cfv 5255  (class class class)co 5919   1stc1st 6193   2ndc2nd 6194   N.cnpi 7334    .N cmi 7336    .pQ cmpq 7339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476  df-ni 7366  df-mi 7368  df-mpq 7407
This theorem is referenced by:  mulpipq  7434
  Copyright terms: Public domain W3C validator