ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipq2 Unicode version

Theorem mulpipq2 7373
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulpipq2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)

Proof of Theorem mulpipq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6169 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
2 xp1st 6169 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
3 mulclpi 7330 . . . 4  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 1st `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
41, 2, 3syl2an 289 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
5 xp2nd 6170 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
6 xp2nd 6170 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
7 mulclpi 7330 . . . 4  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
85, 6, 7syl2an 289 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
9 opexg 4230 . . 3  |-  ( ( ( ( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N.  /\  ( ( 2nd `  A )  .N  ( 2nd `  B
) )  e.  N. )  ->  <. ( ( 1st `  A )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>.  e.  _V )
104, 8, 9syl2anc 411 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  <. (
( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.  e.  _V )
11 fveq2 5517 . . . . 5  |-  ( x  =  A  ->  ( 1st `  x )  =  ( 1st `  A
) )
1211oveq1d 5893 . . . 4  |-  ( x  =  A  ->  (
( 1st `  x
)  .N  ( 1st `  y ) )  =  ( ( 1st `  A
)  .N  ( 1st `  y ) ) )
13 fveq2 5517 . . . . 5  |-  ( x  =  A  ->  ( 2nd `  x )  =  ( 2nd `  A
) )
1413oveq1d 5893 . . . 4  |-  ( x  =  A  ->  (
( 2nd `  x
)  .N  ( 2nd `  y ) )  =  ( ( 2nd `  A
)  .N  ( 2nd `  y ) ) )
1512, 14opeq12d 3788 . . 3  |-  ( x  =  A  ->  <. (
( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.  =  <. ( ( 1st `  A )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  y ) )
>. )
16 fveq2 5517 . . . . 5  |-  ( y  =  B  ->  ( 1st `  y )  =  ( 1st `  B
) )
1716oveq2d 5894 . . . 4  |-  ( y  =  B  ->  (
( 1st `  A
)  .N  ( 1st `  y ) )  =  ( ( 1st `  A
)  .N  ( 1st `  B ) ) )
18 fveq2 5517 . . . . 5  |-  ( y  =  B  ->  ( 2nd `  y )  =  ( 2nd `  B
) )
1918oveq2d 5894 . . . 4  |-  ( y  =  B  ->  (
( 2nd `  A
)  .N  ( 2nd `  y ) )  =  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) )
2017, 19opeq12d 3788 . . 3  |-  ( y  =  B  ->  <. (
( 1st `  A
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  y ) ) >.  =  <. ( ( 1st `  A )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )
21 df-mpq 7347 . . 3  |-  .pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.
)
2215, 20, 21ovmpog 6012 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  <. ( ( 1st `  A )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>.  e.  _V )  -> 
( A  .pQ  B
)  =  <. (
( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
2310, 22mpd3an3 1338 1  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739   <.cop 3597    X. cxp 4626   ` cfv 5218  (class class class)co 5878   1stc1st 6142   2ndc2nd 6143   N.cnpi 7274    .N cmi 7276    .pQ cmpq 7279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-oadd 6424  df-omul 6425  df-ni 7306  df-mi 7308  df-mpq 7347
This theorem is referenced by:  mulpipq  7374
  Copyright terms: Public domain W3C validator