ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrnqg Unicode version

Theorem ltrnqg 7419
Description: Ordering property of reciprocal for positive fractions. For a simplified version of the forward implication, see ltrnqi 7420. (Contributed by Jim Kingdon, 29-Dec-2019.)
Assertion
Ref Expression
ltrnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )

Proof of Theorem ltrnqg
StepHypRef Expression
1 recclnq 7391 . . . 4  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )
2 recclnq 7391 . . . 4  |-  ( B  e.  Q.  ->  ( *Q `  B )  e. 
Q. )
3 mulclnq 7375 . . . 4  |-  ( ( ( *Q `  A
)  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( ( *Q `  A )  .Q  ( *Q `  B ) )  e.  Q. )
41, 2, 3syl2an 289 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  .Q  ( *Q `  B ) )  e.  Q. )
5 ltmnqg 7400 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  (
( *Q `  A
)  .Q  ( *Q
`  B ) )  e.  Q. )  -> 
( A  <Q  B  <->  ( (
( *Q `  A
)  .Q  ( *Q
`  B ) )  .Q  A )  <Q 
( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  B
) ) )
64, 5mpd3an3 1338 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( (
( *Q `  A
)  .Q  ( *Q
`  B ) )  .Q  A )  <Q 
( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  B
) ) )
7 simpl 109 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  e.  Q. )
8 mulcomnqg 7382 . . . . . 6  |-  ( ( ( ( *Q `  A )  .Q  ( *Q `  B ) )  e.  Q.  /\  A  e.  Q. )  ->  (
( ( *Q `  A )  .Q  ( *Q `  B ) )  .Q  A )  =  ( A  .Q  (
( *Q `  A
)  .Q  ( *Q
`  B ) ) ) )
94, 7, 8syl2anc 411 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  A
)  =  ( A  .Q  ( ( *Q
`  A )  .Q  ( *Q `  B
) ) ) )
101adantr 276 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( *Q `  A
)  e.  Q. )
112adantl 277 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( *Q `  B
)  e.  Q. )
12 mulassnqg 7383 . . . . . 6  |-  ( ( A  e.  Q.  /\  ( *Q `  A )  e.  Q.  /\  ( *Q `  B )  e. 
Q. )  ->  (
( A  .Q  ( *Q `  A ) )  .Q  ( *Q `  B ) )  =  ( A  .Q  (
( *Q `  A
)  .Q  ( *Q
`  B ) ) ) )
137, 10, 11, 12syl3anc 1238 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( A  .Q  ( *Q `  A ) )  .Q  ( *Q
`  B ) )  =  ( A  .Q  ( ( *Q `  A )  .Q  ( *Q `  B ) ) ) )
14 mulclnq 7375 . . . . . . 7  |-  ( ( A  e.  Q.  /\  ( *Q `  A )  e.  Q. )  -> 
( A  .Q  ( *Q `  A ) )  e.  Q. )
157, 10, 14syl2anc 411 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  ( *Q `  A ) )  e.  Q. )
16 mulcomnqg 7382 . . . . . 6  |-  ( ( ( A  .Q  ( *Q `  A ) )  e.  Q.  /\  ( *Q `  B )  e. 
Q. )  ->  (
( A  .Q  ( *Q `  A ) )  .Q  ( *Q `  B ) )  =  ( ( *Q `  B )  .Q  ( A  .Q  ( *Q `  A ) ) ) )
1715, 11, 16syl2anc 411 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( A  .Q  ( *Q `  A ) )  .Q  ( *Q
`  B ) )  =  ( ( *Q
`  B )  .Q  ( A  .Q  ( *Q `  A ) ) ) )
189, 13, 173eqtr2d 2216 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  A
)  =  ( ( *Q `  B )  .Q  ( A  .Q  ( *Q `  A ) ) ) )
19 recidnq 7392 . . . . . 6  |-  ( A  e.  Q.  ->  ( A  .Q  ( *Q `  A ) )  =  1Q )
2019oveq2d 5891 . . . . 5  |-  ( A  e.  Q.  ->  (
( *Q `  B
)  .Q  ( A  .Q  ( *Q `  A ) ) )  =  ( ( *Q
`  B )  .Q  1Q ) )
21 mulidnq 7388 . . . . . 6  |-  ( ( *Q `  B )  e.  Q.  ->  (
( *Q `  B
)  .Q  1Q )  =  ( *Q `  B ) )
222, 21syl 14 . . . . 5  |-  ( B  e.  Q.  ->  (
( *Q `  B
)  .Q  1Q )  =  ( *Q `  B ) )
2320, 22sylan9eq 2230 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  B )  .Q  ( A  .Q  ( *Q `  A ) ) )  =  ( *Q `  B ) )
2418, 23eqtrd 2210 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  A
)  =  ( *Q
`  B ) )
25 simpr 110 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  B  e.  Q. )
26 mulassnqg 7383 . . . . 5  |-  ( ( ( *Q `  A
)  e.  Q.  /\  ( *Q `  B )  e.  Q.  /\  B  e.  Q. )  ->  (
( ( *Q `  A )  .Q  ( *Q `  B ) )  .Q  B )  =  ( ( *Q `  A )  .Q  (
( *Q `  B
)  .Q  B ) ) )
2710, 11, 25, 26syl3anc 1238 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  B
)  =  ( ( *Q `  A )  .Q  ( ( *Q
`  B )  .Q  B ) ) )
28 mulcomnqg 7382 . . . . . 6  |-  ( ( ( *Q `  B
)  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  B )  .Q  B
)  =  ( B  .Q  ( *Q `  B ) ) )
2911, 25, 28syl2anc 411 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  B )  .Q  B
)  =  ( B  .Q  ( *Q `  B ) ) )
3029oveq2d 5891 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  .Q  (
( *Q `  B
)  .Q  B ) )  =  ( ( *Q `  A )  .Q  ( B  .Q  ( *Q `  B ) ) ) )
31 recidnq 7392 . . . . . 6  |-  ( B  e.  Q.  ->  ( B  .Q  ( *Q `  B ) )  =  1Q )
3231oveq2d 5891 . . . . 5  |-  ( B  e.  Q.  ->  (
( *Q `  A
)  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( ( *Q
`  A )  .Q  1Q ) )
33 mulidnq 7388 . . . . . 6  |-  ( ( *Q `  A )  e.  Q.  ->  (
( *Q `  A
)  .Q  1Q )  =  ( *Q `  A ) )
341, 33syl 14 . . . . 5  |-  ( A  e.  Q.  ->  (
( *Q `  A
)  .Q  1Q )  =  ( *Q `  A ) )
3532, 34sylan9eqr 2232 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( *Q `  A ) )
3627, 30, 353eqtrd 2214 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  B
)  =  ( *Q
`  A ) )
3724, 36breq12d 4017 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( ( *Q `  A )  .Q  ( *Q `  B ) )  .Q  A )  <Q  (
( ( *Q `  A )  .Q  ( *Q `  B ) )  .Q  B )  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
386, 37bitrd 188 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   class class class wbr 4004   ` cfv 5217  (class class class)co 5875   Q.cnq 7279   1Qc1q 7280    .Q cmq 7282   *Qcrq 7283    <Q cltq 7284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-mi 7305  df-lti 7306  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352
This theorem is referenced by:  ltrnqi  7420  recexprlemloc  7630  archrecnq  7662
  Copyright terms: Public domain W3C validator