ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrnqg Unicode version

Theorem ltrnqg 7450
Description: Ordering property of reciprocal for positive fractions. For a simplified version of the forward implication, see ltrnqi 7451. (Contributed by Jim Kingdon, 29-Dec-2019.)
Assertion
Ref Expression
ltrnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )

Proof of Theorem ltrnqg
StepHypRef Expression
1 recclnq 7422 . . . 4  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )
2 recclnq 7422 . . . 4  |-  ( B  e.  Q.  ->  ( *Q `  B )  e. 
Q. )
3 mulclnq 7406 . . . 4  |-  ( ( ( *Q `  A
)  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( ( *Q `  A )  .Q  ( *Q `  B ) )  e.  Q. )
41, 2, 3syl2an 289 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  .Q  ( *Q `  B ) )  e.  Q. )
5 ltmnqg 7431 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  (
( *Q `  A
)  .Q  ( *Q
`  B ) )  e.  Q. )  -> 
( A  <Q  B  <->  ( (
( *Q `  A
)  .Q  ( *Q
`  B ) )  .Q  A )  <Q 
( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  B
) ) )
64, 5mpd3an3 1349 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( (
( *Q `  A
)  .Q  ( *Q
`  B ) )  .Q  A )  <Q 
( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  B
) ) )
7 simpl 109 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  e.  Q. )
8 mulcomnqg 7413 . . . . . 6  |-  ( ( ( ( *Q `  A )  .Q  ( *Q `  B ) )  e.  Q.  /\  A  e.  Q. )  ->  (
( ( *Q `  A )  .Q  ( *Q `  B ) )  .Q  A )  =  ( A  .Q  (
( *Q `  A
)  .Q  ( *Q
`  B ) ) ) )
94, 7, 8syl2anc 411 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  A
)  =  ( A  .Q  ( ( *Q
`  A )  .Q  ( *Q `  B
) ) ) )
101adantr 276 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( *Q `  A
)  e.  Q. )
112adantl 277 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( *Q `  B
)  e.  Q. )
12 mulassnqg 7414 . . . . . 6  |-  ( ( A  e.  Q.  /\  ( *Q `  A )  e.  Q.  /\  ( *Q `  B )  e. 
Q. )  ->  (
( A  .Q  ( *Q `  A ) )  .Q  ( *Q `  B ) )  =  ( A  .Q  (
( *Q `  A
)  .Q  ( *Q
`  B ) ) ) )
137, 10, 11, 12syl3anc 1249 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( A  .Q  ( *Q `  A ) )  .Q  ( *Q
`  B ) )  =  ( A  .Q  ( ( *Q `  A )  .Q  ( *Q `  B ) ) ) )
14 mulclnq 7406 . . . . . . 7  |-  ( ( A  e.  Q.  /\  ( *Q `  A )  e.  Q. )  -> 
( A  .Q  ( *Q `  A ) )  e.  Q. )
157, 10, 14syl2anc 411 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  ( *Q `  A ) )  e.  Q. )
16 mulcomnqg 7413 . . . . . 6  |-  ( ( ( A  .Q  ( *Q `  A ) )  e.  Q.  /\  ( *Q `  B )  e. 
Q. )  ->  (
( A  .Q  ( *Q `  A ) )  .Q  ( *Q `  B ) )  =  ( ( *Q `  B )  .Q  ( A  .Q  ( *Q `  A ) ) ) )
1715, 11, 16syl2anc 411 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( A  .Q  ( *Q `  A ) )  .Q  ( *Q
`  B ) )  =  ( ( *Q
`  B )  .Q  ( A  .Q  ( *Q `  A ) ) ) )
189, 13, 173eqtr2d 2228 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  A
)  =  ( ( *Q `  B )  .Q  ( A  .Q  ( *Q `  A ) ) ) )
19 recidnq 7423 . . . . . 6  |-  ( A  e.  Q.  ->  ( A  .Q  ( *Q `  A ) )  =  1Q )
2019oveq2d 5913 . . . . 5  |-  ( A  e.  Q.  ->  (
( *Q `  B
)  .Q  ( A  .Q  ( *Q `  A ) ) )  =  ( ( *Q
`  B )  .Q  1Q ) )
21 mulidnq 7419 . . . . . 6  |-  ( ( *Q `  B )  e.  Q.  ->  (
( *Q `  B
)  .Q  1Q )  =  ( *Q `  B ) )
222, 21syl 14 . . . . 5  |-  ( B  e.  Q.  ->  (
( *Q `  B
)  .Q  1Q )  =  ( *Q `  B ) )
2320, 22sylan9eq 2242 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  B )  .Q  ( A  .Q  ( *Q `  A ) ) )  =  ( *Q `  B ) )
2418, 23eqtrd 2222 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  A
)  =  ( *Q
`  B ) )
25 simpr 110 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  B  e.  Q. )
26 mulassnqg 7414 . . . . 5  |-  ( ( ( *Q `  A
)  e.  Q.  /\  ( *Q `  B )  e.  Q.  /\  B  e.  Q. )  ->  (
( ( *Q `  A )  .Q  ( *Q `  B ) )  .Q  B )  =  ( ( *Q `  A )  .Q  (
( *Q `  B
)  .Q  B ) ) )
2710, 11, 25, 26syl3anc 1249 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  B
)  =  ( ( *Q `  A )  .Q  ( ( *Q
`  B )  .Q  B ) ) )
28 mulcomnqg 7413 . . . . . 6  |-  ( ( ( *Q `  B
)  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  B )  .Q  B
)  =  ( B  .Q  ( *Q `  B ) ) )
2911, 25, 28syl2anc 411 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  B )  .Q  B
)  =  ( B  .Q  ( *Q `  B ) ) )
3029oveq2d 5913 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  .Q  (
( *Q `  B
)  .Q  B ) )  =  ( ( *Q `  A )  .Q  ( B  .Q  ( *Q `  B ) ) ) )
31 recidnq 7423 . . . . . 6  |-  ( B  e.  Q.  ->  ( B  .Q  ( *Q `  B ) )  =  1Q )
3231oveq2d 5913 . . . . 5  |-  ( B  e.  Q.  ->  (
( *Q `  A
)  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( ( *Q
`  A )  .Q  1Q ) )
33 mulidnq 7419 . . . . . 6  |-  ( ( *Q `  A )  e.  Q.  ->  (
( *Q `  A
)  .Q  1Q )  =  ( *Q `  A ) )
341, 33syl 14 . . . . 5  |-  ( A  e.  Q.  ->  (
( *Q `  A
)  .Q  1Q )  =  ( *Q `  A ) )
3532, 34sylan9eqr 2244 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( *Q `  A ) )
3627, 30, 353eqtrd 2226 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( *Q
`  A )  .Q  ( *Q `  B
) )  .Q  B
)  =  ( *Q
`  A ) )
3724, 36breq12d 4031 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( ( *Q `  A )  .Q  ( *Q `  B ) )  .Q  A )  <Q  (
( ( *Q `  A )  .Q  ( *Q `  B ) )  .Q  B )  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
386, 37bitrd 188 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   class class class wbr 4018   ` cfv 5235  (class class class)co 5897   Q.cnq 7310   1Qc1q 7311    .Q cmq 7313   *Qcrq 7314    <Q cltq 7315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-mi 7336  df-lti 7337  df-mpq 7375  df-enq 7377  df-nqqs 7378  df-mqqs 7380  df-1nqqs 7381  df-rq 7382  df-ltnqqs 7383
This theorem is referenced by:  ltrnqi  7451  recexprlemloc  7661  archrecnq  7693
  Copyright terms: Public domain W3C validator