ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcval Unicode version

Theorem bcval 10662
Description: Value of the binomial coefficient,  N choose  K. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when  0  <_  K  <_  N does not hold. See bcval2 10663 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )

Proof of Theorem bcval
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3525 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  if ( K  e.  (
0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
21adantl 275 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
3 simpll 519 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  NN0 )
43faccld 10649 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  NN )
54nnzd 9312 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  ZZ )
6 fznn0sub 9992 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
76adantl 275 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  NN0 )
87faccld 10649 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  e.  NN )
9 elfznn0 10049 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
109adantl 275 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  NN0 )
1110faccld 10649 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  e.  NN )
128, 11nnmulcld 8906 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K
) )  e.  NN )
13 znq 9562 . . . . 5  |-  ( ( ( ! `  N
)  e.  ZZ  /\  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )  ->  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) )  e.  QQ )
145, 12, 13syl2anc 409 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )  e.  QQ )
152, 14eqeltrd 2243 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  e.  QQ )
16 iffalse 3528 . . . . 5  |-  ( -.  K  e.  ( 0 ... N )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) ,  0 )  =  0 )
17 0z 9202 . . . . . 6  |-  0  e.  ZZ
18 zq 9564 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
1917, 18ax-mp 5 . . . . 5  |-  0  e.  QQ
2016, 19eqeltrdi 2257 . . . 4  |-  ( -.  K  e.  ( 0 ... N )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) ,  0 )  e.  QQ )
2120adantl 275 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... N
) )  ->  if ( K  e.  (
0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  e.  QQ )
22 simpr 109 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  K  e.  ZZ )
23 0zd 9203 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  0  e.  ZZ )
24 simpl 108 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  NN0 )
2524nn0zd 9311 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  ZZ )
26 fzdcel 9975 . . . . 5  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  (
0 ... N ) )
2722, 23, 25, 26syl3anc 1228 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  -> DECID  K  e.  ( 0 ... N ) )
28 exmiddc 826 . . . 4  |-  (DECID  K  e.  ( 0 ... N
)  ->  ( K  e.  ( 0 ... N
)  \/  -.  K  e.  ( 0 ... N
) ) )
2927, 28syl 14 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  \/  -.  K  e.  ( 0 ... N
) ) )
3015, 21, 29mpjaodan 788 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  if ( K  e.  ( 0 ... N
) ,  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) ,  0 )  e.  QQ )
31 oveq2 5850 . . . . 5  |-  ( n  =  N  ->  (
0 ... n )  =  ( 0 ... N
) )
3231eleq2d 2236 . . . 4  |-  ( n  =  N  ->  (
k  e.  ( 0 ... n )  <->  k  e.  ( 0 ... N
) ) )
33 fveq2 5486 . . . . 5  |-  ( n  =  N  ->  ( ! `  n )  =  ( ! `  N ) )
34 oveq1 5849 . . . . . . 7  |-  ( n  =  N  ->  (
n  -  k )  =  ( N  -  k ) )
3534fveq2d 5490 . . . . . 6  |-  ( n  =  N  ->  ( ! `  ( n  -  k ) )  =  ( ! `  ( N  -  k
) ) )
3635oveq1d 5857 . . . . 5  |-  ( n  =  N  ->  (
( ! `  (
n  -  k ) )  x.  ( ! `
 k ) )  =  ( ( ! `
 ( N  -  k ) )  x.  ( ! `  k
) ) )
3733, 36oveq12d 5860 . . . 4  |-  ( n  =  N  ->  (
( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  k
) )  x.  ( ! `  k )
) ) )
3832, 37ifbieq1d 3542 . . 3  |-  ( n  =  N  ->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `
 n )  / 
( ( ! `  ( n  -  k
) )  x.  ( ! `  k )
) ) ,  0 )  =  if ( k  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  k )
)  x.  ( ! `
 k ) ) ) ,  0 ) )
39 eleq1 2229 . . . 4  |-  ( k  =  K  ->  (
k  e.  ( 0 ... N )  <->  K  e.  ( 0 ... N
) ) )
40 oveq2 5850 . . . . . . 7  |-  ( k  =  K  ->  ( N  -  k )  =  ( N  -  K ) )
4140fveq2d 5490 . . . . . 6  |-  ( k  =  K  ->  ( ! `  ( N  -  k ) )  =  ( ! `  ( N  -  K
) ) )
42 fveq2 5486 . . . . . 6  |-  ( k  =  K  ->  ( ! `  k )  =  ( ! `  K ) )
4341, 42oveq12d 5860 . . . . 5  |-  ( k  =  K  ->  (
( ! `  ( N  -  k )
)  x.  ( ! `
 k ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )
4443oveq2d 5858 . . . 4  |-  ( k  =  K  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  k ) )  x.  ( ! `  k ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
4539, 44ifbieq1d 3542 . . 3  |-  ( k  =  K  ->  if ( k  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  k
) )  x.  ( ! `  k )
) ) ,  0 )  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
46 df-bc 10661 . . 3  |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `
 n )  / 
( ( ! `  ( n  -  k
) )  x.  ( ! `  k )
) ) ,  0 ) )
4738, 45, 46ovmpog 5976 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  if ( K  e.  (
0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  e.  QQ )  -> 
( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
4830, 47mpd3an3 1328 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136   ifcif 3520   ` cfv 5188  (class class class)co 5842   0cc0 7753    x. cmul 7758    - cmin 8069    / cdiv 8568   NNcn 8857   NN0cn0 9114   ZZcz 9191   QQcq 9557   ...cfz 9944   !cfa 10638    _C cbc 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-fz 9945  df-seqfrec 10381  df-fac 10639  df-bc 10661
This theorem is referenced by:  bcval2  10663  bcval3  10664
  Copyright terms: Public domain W3C validator