ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcval Unicode version

Theorem bcval 10488
Description: Value of the binomial coefficient,  N choose  K. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when  0  <_  K  <_  N does not hold. See bcval2 10489 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )

Proof of Theorem bcval
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3474 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  if ( K  e.  (
0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
21adantl 275 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
3 simpll 518 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  NN0 )
43faccld 10475 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  NN )
54nnzd 9165 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  ZZ )
6 fznn0sub 9830 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
76adantl 275 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  NN0 )
87faccld 10475 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  e.  NN )
9 elfznn0 9887 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
109adantl 275 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  NN0 )
1110faccld 10475 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  e.  NN )
128, 11nnmulcld 8762 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K
) )  e.  NN )
13 znq 9409 . . . . 5  |-  ( ( ( ! `  N
)  e.  ZZ  /\  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )  ->  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) )  e.  QQ )
145, 12, 13syl2anc 408 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )  e.  QQ )
152, 14eqeltrd 2214 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  e.  QQ )
16 iffalse 3477 . . . . 5  |-  ( -.  K  e.  ( 0 ... N )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) ,  0 )  =  0 )
17 0z 9058 . . . . . 6  |-  0  e.  ZZ
18 zq 9411 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
1917, 18ax-mp 5 . . . . 5  |-  0  e.  QQ
2016, 19eqeltrdi 2228 . . . 4  |-  ( -.  K  e.  ( 0 ... N )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) ,  0 )  e.  QQ )
2120adantl 275 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... N
) )  ->  if ( K  e.  (
0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  e.  QQ )
22 simpr 109 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  K  e.  ZZ )
23 0zd 9059 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  0  e.  ZZ )
24 simpl 108 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  NN0 )
2524nn0zd 9164 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  ZZ )
26 fzdcel 9813 . . . . 5  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  (
0 ... N ) )
2722, 23, 25, 26syl3anc 1216 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  -> DECID  K  e.  ( 0 ... N ) )
28 exmiddc 821 . . . 4  |-  (DECID  K  e.  ( 0 ... N
)  ->  ( K  e.  ( 0 ... N
)  \/  -.  K  e.  ( 0 ... N
) ) )
2927, 28syl 14 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  \/  -.  K  e.  ( 0 ... N
) ) )
3015, 21, 29mpjaodan 787 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  if ( K  e.  ( 0 ... N
) ,  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) ,  0 )  e.  QQ )
31 oveq2 5775 . . . . 5  |-  ( n  =  N  ->  (
0 ... n )  =  ( 0 ... N
) )
3231eleq2d 2207 . . . 4  |-  ( n  =  N  ->  (
k  e.  ( 0 ... n )  <->  k  e.  ( 0 ... N
) ) )
33 fveq2 5414 . . . . 5  |-  ( n  =  N  ->  ( ! `  n )  =  ( ! `  N ) )
34 oveq1 5774 . . . . . . 7  |-  ( n  =  N  ->  (
n  -  k )  =  ( N  -  k ) )
3534fveq2d 5418 . . . . . 6  |-  ( n  =  N  ->  ( ! `  ( n  -  k ) )  =  ( ! `  ( N  -  k
) ) )
3635oveq1d 5782 . . . . 5  |-  ( n  =  N  ->  (
( ! `  (
n  -  k ) )  x.  ( ! `
 k ) )  =  ( ( ! `
 ( N  -  k ) )  x.  ( ! `  k
) ) )
3733, 36oveq12d 5785 . . . 4  |-  ( n  =  N  ->  (
( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  k
) )  x.  ( ! `  k )
) ) )
3832, 37ifbieq1d 3489 . . 3  |-  ( n  =  N  ->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `
 n )  / 
( ( ! `  ( n  -  k
) )  x.  ( ! `  k )
) ) ,  0 )  =  if ( k  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  k )
)  x.  ( ! `
 k ) ) ) ,  0 ) )
39 eleq1 2200 . . . 4  |-  ( k  =  K  ->  (
k  e.  ( 0 ... N )  <->  K  e.  ( 0 ... N
) ) )
40 oveq2 5775 . . . . . . 7  |-  ( k  =  K  ->  ( N  -  k )  =  ( N  -  K ) )
4140fveq2d 5418 . . . . . 6  |-  ( k  =  K  ->  ( ! `  ( N  -  k ) )  =  ( ! `  ( N  -  K
) ) )
42 fveq2 5414 . . . . . 6  |-  ( k  =  K  ->  ( ! `  k )  =  ( ! `  K ) )
4341, 42oveq12d 5785 . . . . 5  |-  ( k  =  K  ->  (
( ! `  ( N  -  k )
)  x.  ( ! `
 k ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )
4443oveq2d 5783 . . . 4  |-  ( k  =  K  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  k ) )  x.  ( ! `  k ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
4539, 44ifbieq1d 3489 . . 3  |-  ( k  =  K  ->  if ( k  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  k
) )  x.  ( ! `  k )
) ) ,  0 )  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
46 df-bc 10487 . . 3  |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `
 n )  / 
( ( ! `  ( n  -  k
) )  x.  ( ! `  k )
) ) ,  0 ) )
4738, 45, 46ovmpog 5898 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  if ( K  e.  (
0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  e.  QQ )  -> 
( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
4830, 47mpd3an3 1316 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480   ifcif 3469   ` cfv 5118  (class class class)co 5767   0cc0 7613    x. cmul 7618    - cmin 7926    / cdiv 8425   NNcn 8713   NN0cn0 8970   ZZcz 9047   QQcq 9404   ...cfz 9783   !cfa 10464    _C cbc 10486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-fz 9784  df-seqfrec 10212  df-fac 10465  df-bc 10487
This theorem is referenced by:  bcval2  10489  bcval3  10490
  Copyright terms: Public domain W3C validator