ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcval Unicode version

Theorem bcval 10926
Description: Value of the binomial coefficient,  N choose  K. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when  0  <_  K  <_  N does not hold. See bcval2 10927 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )

Proof of Theorem bcval
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3580 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  if ( K  e.  (
0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
21adantl 277 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
3 simpll 527 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  NN0 )
43faccld 10913 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  NN )
54nnzd 9524 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  ZZ )
6 fznn0sub 10209 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
76adantl 277 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  NN0 )
87faccld 10913 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  e.  NN )
9 elfznn0 10266 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
109adantl 277 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  NN0 )
1110faccld 10913 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  e.  NN )
128, 11nnmulcld 9115 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K
) )  e.  NN )
13 znq 9775 . . . . 5  |-  ( ( ( ! `  N
)  e.  ZZ  /\  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )  ->  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) )  e.  QQ )
145, 12, 13syl2anc 411 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )  e.  QQ )
152, 14eqeltrd 2283 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  e.  QQ )
16 iffalse 3583 . . . . 5  |-  ( -.  K  e.  ( 0 ... N )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) ,  0 )  =  0 )
17 0z 9413 . . . . . 6  |-  0  e.  ZZ
18 zq 9777 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
1917, 18ax-mp 5 . . . . 5  |-  0  e.  QQ
2016, 19eqeltrdi 2297 . . . 4  |-  ( -.  K  e.  ( 0 ... N )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) ,  0 )  e.  QQ )
2120adantl 277 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... N
) )  ->  if ( K  e.  (
0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  e.  QQ )
22 simpr 110 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  K  e.  ZZ )
23 0zd 9414 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  0  e.  ZZ )
24 simpl 109 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  NN0 )
2524nn0zd 9523 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  ZZ )
26 fzdcel 10192 . . . . 5  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  (
0 ... N ) )
2722, 23, 25, 26syl3anc 1250 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  -> DECID  K  e.  ( 0 ... N ) )
28 exmiddc 838 . . . 4  |-  (DECID  K  e.  ( 0 ... N
)  ->  ( K  e.  ( 0 ... N
)  \/  -.  K  e.  ( 0 ... N
) ) )
2927, 28syl 14 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  \/  -.  K  e.  ( 0 ... N
) ) )
3015, 21, 29mpjaodan 800 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  if ( K  e.  ( 0 ... N
) ,  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) ,  0 )  e.  QQ )
31 oveq2 5970 . . . . 5  |-  ( n  =  N  ->  (
0 ... n )  =  ( 0 ... N
) )
3231eleq2d 2276 . . . 4  |-  ( n  =  N  ->  (
k  e.  ( 0 ... n )  <->  k  e.  ( 0 ... N
) ) )
33 fveq2 5594 . . . . 5  |-  ( n  =  N  ->  ( ! `  n )  =  ( ! `  N ) )
34 oveq1 5969 . . . . . . 7  |-  ( n  =  N  ->  (
n  -  k )  =  ( N  -  k ) )
3534fveq2d 5598 . . . . . 6  |-  ( n  =  N  ->  ( ! `  ( n  -  k ) )  =  ( ! `  ( N  -  k
) ) )
3635oveq1d 5977 . . . . 5  |-  ( n  =  N  ->  (
( ! `  (
n  -  k ) )  x.  ( ! `
 k ) )  =  ( ( ! `
 ( N  -  k ) )  x.  ( ! `  k
) ) )
3733, 36oveq12d 5980 . . . 4  |-  ( n  =  N  ->  (
( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  k
) )  x.  ( ! `  k )
) ) )
3832, 37ifbieq1d 3598 . . 3  |-  ( n  =  N  ->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `
 n )  / 
( ( ! `  ( n  -  k
) )  x.  ( ! `  k )
) ) ,  0 )  =  if ( k  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  k )
)  x.  ( ! `
 k ) ) ) ,  0 ) )
39 eleq1 2269 . . . 4  |-  ( k  =  K  ->  (
k  e.  ( 0 ... N )  <->  K  e.  ( 0 ... N
) ) )
40 oveq2 5970 . . . . . . 7  |-  ( k  =  K  ->  ( N  -  k )  =  ( N  -  K ) )
4140fveq2d 5598 . . . . . 6  |-  ( k  =  K  ->  ( ! `  ( N  -  k ) )  =  ( ! `  ( N  -  K
) ) )
42 fveq2 5594 . . . . . 6  |-  ( k  =  K  ->  ( ! `  k )  =  ( ! `  K ) )
4341, 42oveq12d 5980 . . . . 5  |-  ( k  =  K  ->  (
( ! `  ( N  -  k )
)  x.  ( ! `
 k ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )
4443oveq2d 5978 . . . 4  |-  ( k  =  K  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  k ) )  x.  ( ! `  k ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
4539, 44ifbieq1d 3598 . . 3  |-  ( k  =  K  ->  if ( k  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  k
) )  x.  ( ! `  k )
) ) ,  0 )  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
46 df-bc 10925 . . 3  |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `
 n )  / 
( ( ! `  ( n  -  k
) )  x.  ( ! `  k )
) ) ,  0 ) )
4738, 45, 46ovmpog 6098 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  if ( K  e.  (
0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  e.  QQ )  -> 
( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
4830, 47mpd3an3 1351 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2177   ifcif 3575   ` cfv 5285  (class class class)co 5962   0cc0 7955    x. cmul 7960    - cmin 8273    / cdiv 8775   NNcn 9066   NN0cn0 9325   ZZcz 9402   QQcq 9770   ...cfz 10160   !cfa 10902    _C cbc 10924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-fz 10161  df-seqfrec 10625  df-fac 10903  df-bc 10925
This theorem is referenced by:  bcval2  10927  bcval3  10928
  Copyright terms: Public domain W3C validator