ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringrz Unicode version

Theorem ringrz 13921
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
rngz.b  |-  B  =  ( Base `  R
)
rngz.t  |-  .x.  =  ( .r `  R )
rngz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
ringrz  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem ringrz
StepHypRef Expression
1 ringgrp 13878 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2 rngz.b . . . . . . 7  |-  B  =  ( Base `  R
)
3 rngz.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
42, 3grpidcl 13476 . . . . . 6  |-  ( R  e.  Grp  ->  .0.  e.  B )
5 eqid 2207 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
62, 5, 3grplid 13478 . . . . . 6  |-  ( ( R  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  ( +g  `  R )  .0.  )  =  .0.  )
71, 4, 6syl2anc2 412 . . . . 5  |-  ( R  e.  Ring  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
87adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
98oveq2d 5983 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( X  .x.  .0.  )
)
10 simpr 110 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  B )
111, 4syl 14 . . . . . 6  |-  ( R  e.  Ring  ->  .0.  e.  B )
1211adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .0.  e.  B )
1310, 12, 123jca 1180 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )
14 rngz.t . . . . 5  |-  .x.  =  ( .r `  R )
152, 5, 14ringdi 13895 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )  -> 
( X  .x.  (  .0.  ( +g  `  R
)  .0.  ) )  =  ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
) )
1613, 15syldan 282 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) ) )
171adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Grp )
182, 14ringcl 13890 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  .0.  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
1912, 18mpd3an3 1351 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
202, 5, 3grplid 13478 . . . . 5  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  =  ( X  .x.  .0.  )
)
2120eqcomd 2213 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
2217, 19, 21syl2anc 411 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
239, 16, 223eqtr3d 2248 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) ) )
242, 5grprcan 13484 . . 3  |-  ( ( R  e.  Grp  /\  ( ( X  .x.  .0.  )  e.  B  /\  .0.  e.  B  /\  ( X  .x.  .0.  )  e.  B ) )  -> 
( ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
)  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2517, 19, 12, 19, 24syl13anc 1252 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2623, 25mpbid 147 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   .rcmulr 13025   0gc0g 13203   Grpcgrp 13447   Ringcrg 13873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-mgp 13798  df-ring 13875
This theorem is referenced by:  ringrzd  13923  ringsrg  13924  ringinvnz1ne0  13926  ringinvnzdiv  13927  ringnegr  13929  dvdsr02  13982  rrgeq0  14142  unitrrg  14144  domneq0  14149  lmodvs0  14199
  Copyright terms: Public domain W3C validator