ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubg Unicode version

Theorem subsubg 13270
Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subsubg.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subsubg  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  (SubGrp `  H )  <->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) ) )

Proof of Theorem subsubg
StepHypRef Expression
1 subgrcl 13252 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
21adantr 276 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  G  e.  Grp )
3 eqid 2193 . . . . . . . 8  |-  ( Base `  H )  =  (
Base `  H )
43subgss 13247 . . . . . . 7  |-  ( A  e.  (SubGrp `  H
)  ->  A  C_  ( Base `  H ) )
54adantl 277 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  ( Base `  H ) )
6 subsubg.h . . . . . . . 8  |-  H  =  ( Gs  S )
76subgbas 13251 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
87adantr 276 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  S  =  ( Base `  H )
)
95, 8sseqtrrd 3219 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  S
)
10 eqid 2193 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
1110subgss 13247 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
1211adantr 276 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  S  C_  ( Base `  G ) )
139, 12sstrd 3190 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  ( Base `  G ) )
146oveq1i 5929 . . . . . . 7  |-  ( Hs  A )  =  ( ( Gs  S )s  A )
151adantr 276 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S )  ->  G  e.  Grp )
16 ressabsg 12697 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S  /\  G  e. 
Grp )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
1715, 16mpd3an3 1349 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
1814, 17eqtrid 2238 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S )  ->  ( Hs  A )  =  ( Gs  A ) )
199, 18syldan 282 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Hs  A
)  =  ( Gs  A ) )
20 eqid 2193 . . . . . . 7  |-  ( Hs  A )  =  ( Hs  A )
2120subggrp 13250 . . . . . 6  |-  ( A  e.  (SubGrp `  H
)  ->  ( Hs  A
)  e.  Grp )
2221adantl 277 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Hs  A
)  e.  Grp )
2319, 22eqeltrrd 2271 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Gs  A
)  e.  Grp )
2410issubg 13246 . . . 4  |-  ( A  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  A  C_  ( Base `  G )  /\  ( Gs  A )  e.  Grp ) )
252, 13, 23, 24syl3anbrc 1183 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  e.  (SubGrp `  G ) )
2625, 9jca 306 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) )
276subggrp 13250 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
2827adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  H  e.  Grp )
29 simprr 531 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  C_  S )
307adantr 276 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  S  =  ( Base `  H
) )
3129, 30sseqtrd 3218 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  C_  ( Base `  H
) )
3218adantrl 478 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  =  ( Gs  A ) )
33 eqid 2193 . . . . . 6  |-  ( Gs  A )  =  ( Gs  A )
3433subggrp 13250 . . . . 5  |-  ( A  e.  (SubGrp `  G
)  ->  ( Gs  A
)  e.  Grp )
3534ad2antrl 490 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Gs  A )  e.  Grp )
3632, 35eqeltrd 2270 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  e.  Grp )
373issubg 13246 . . 3  |-  ( A  e.  (SubGrp `  H
)  <->  ( H  e. 
Grp  /\  A  C_  ( Base `  H )  /\  ( Hs  A )  e.  Grp ) )
3828, 31, 36, 37syl3anbrc 1183 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  e.  (SubGrp `  H )
)
3926, 38impbida 596 1  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  (SubGrp `  H )  <->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    C_ wss 3154   ` cfv 5255  (class class class)co 5919   Basecbs 12621   ↾s cress 12622   Grpcgrp 13075  SubGrpcsubg 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-subg 13243
This theorem is referenced by:  nmznsg  13286
  Copyright terms: Public domain W3C validator