ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubg Unicode version

Theorem subsubg 13533
Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subsubg.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subsubg  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  (SubGrp `  H )  <->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) ) )

Proof of Theorem subsubg
StepHypRef Expression
1 subgrcl 13515 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
21adantr 276 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  G  e.  Grp )
3 eqid 2205 . . . . . . . 8  |-  ( Base `  H )  =  (
Base `  H )
43subgss 13510 . . . . . . 7  |-  ( A  e.  (SubGrp `  H
)  ->  A  C_  ( Base `  H ) )
54adantl 277 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  ( Base `  H ) )
6 subsubg.h . . . . . . . 8  |-  H  =  ( Gs  S )
76subgbas 13514 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
87adantr 276 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  S  =  ( Base `  H )
)
95, 8sseqtrrd 3232 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  S
)
10 eqid 2205 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
1110subgss 13510 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
1211adantr 276 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  S  C_  ( Base `  G ) )
139, 12sstrd 3203 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  ( Base `  G ) )
146oveq1i 5954 . . . . . . 7  |-  ( Hs  A )  =  ( ( Gs  S )s  A )
151adantr 276 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S )  ->  G  e.  Grp )
16 ressabsg 12908 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S  /\  G  e. 
Grp )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
1715, 16mpd3an3 1351 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
1814, 17eqtrid 2250 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S )  ->  ( Hs  A )  =  ( Gs  A ) )
199, 18syldan 282 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Hs  A
)  =  ( Gs  A ) )
20 eqid 2205 . . . . . . 7  |-  ( Hs  A )  =  ( Hs  A )
2120subggrp 13513 . . . . . 6  |-  ( A  e.  (SubGrp `  H
)  ->  ( Hs  A
)  e.  Grp )
2221adantl 277 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Hs  A
)  e.  Grp )
2319, 22eqeltrrd 2283 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Gs  A
)  e.  Grp )
2410issubg 13509 . . . 4  |-  ( A  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  A  C_  ( Base `  G )  /\  ( Gs  A )  e.  Grp ) )
252, 13, 23, 24syl3anbrc 1184 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  e.  (SubGrp `  G ) )
2625, 9jca 306 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) )
276subggrp 13513 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
2827adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  H  e.  Grp )
29 simprr 531 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  C_  S )
307adantr 276 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  S  =  ( Base `  H
) )
3129, 30sseqtrd 3231 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  C_  ( Base `  H
) )
3218adantrl 478 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  =  ( Gs  A ) )
33 eqid 2205 . . . . . 6  |-  ( Gs  A )  =  ( Gs  A )
3433subggrp 13513 . . . . 5  |-  ( A  e.  (SubGrp `  G
)  ->  ( Gs  A
)  e.  Grp )
3534ad2antrl 490 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Gs  A )  e.  Grp )
3632, 35eqeltrd 2282 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  e.  Grp )
373issubg 13509 . . 3  |-  ( A  e.  (SubGrp `  H
)  <->  ( H  e. 
Grp  /\  A  C_  ( Base `  H )  /\  ( Hs  A )  e.  Grp ) )
3828, 31, 36, 37syl3anbrc 1184 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  e.  (SubGrp `  H )
)
3926, 38impbida 596 1  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  (SubGrp `  H )  <->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    C_ wss 3166   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   Grpcgrp 13332  SubGrpcsubg 13503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-subg 13506
This theorem is referenced by:  nmznsg  13549
  Copyright terms: Public domain W3C validator