ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubg Unicode version

Theorem subsubg 13648
Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subsubg.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subsubg  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  (SubGrp `  H )  <->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) ) )

Proof of Theorem subsubg
StepHypRef Expression
1 subgrcl 13630 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
21adantr 276 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  G  e.  Grp )
3 eqid 2207 . . . . . . . 8  |-  ( Base `  H )  =  (
Base `  H )
43subgss 13625 . . . . . . 7  |-  ( A  e.  (SubGrp `  H
)  ->  A  C_  ( Base `  H ) )
54adantl 277 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  ( Base `  H ) )
6 subsubg.h . . . . . . . 8  |-  H  =  ( Gs  S )
76subgbas 13629 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
87adantr 276 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  S  =  ( Base `  H )
)
95, 8sseqtrrd 3240 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  S
)
10 eqid 2207 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
1110subgss 13625 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
1211adantr 276 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  S  C_  ( Base `  G ) )
139, 12sstrd 3211 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  ( Base `  G ) )
146oveq1i 5977 . . . . . . 7  |-  ( Hs  A )  =  ( ( Gs  S )s  A )
151adantr 276 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S )  ->  G  e.  Grp )
16 ressabsg 13023 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S  /\  G  e. 
Grp )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
1715, 16mpd3an3 1351 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
1814, 17eqtrid 2252 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S )  ->  ( Hs  A )  =  ( Gs  A ) )
199, 18syldan 282 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Hs  A
)  =  ( Gs  A ) )
20 eqid 2207 . . . . . . 7  |-  ( Hs  A )  =  ( Hs  A )
2120subggrp 13628 . . . . . 6  |-  ( A  e.  (SubGrp `  H
)  ->  ( Hs  A
)  e.  Grp )
2221adantl 277 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Hs  A
)  e.  Grp )
2319, 22eqeltrrd 2285 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Gs  A
)  e.  Grp )
2410issubg 13624 . . . 4  |-  ( A  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  A  C_  ( Base `  G )  /\  ( Gs  A )  e.  Grp ) )
252, 13, 23, 24syl3anbrc 1184 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  e.  (SubGrp `  G ) )
2625, 9jca 306 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) )
276subggrp 13628 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
2827adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  H  e.  Grp )
29 simprr 531 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  C_  S )
307adantr 276 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  S  =  ( Base `  H
) )
3129, 30sseqtrd 3239 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  C_  ( Base `  H
) )
3218adantrl 478 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  =  ( Gs  A ) )
33 eqid 2207 . . . . . 6  |-  ( Gs  A )  =  ( Gs  A )
3433subggrp 13628 . . . . 5  |-  ( A  e.  (SubGrp `  G
)  ->  ( Gs  A
)  e.  Grp )
3534ad2antrl 490 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Gs  A )  e.  Grp )
3632, 35eqeltrd 2284 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  e.  Grp )
373issubg 13624 . . 3  |-  ( A  e.  (SubGrp `  H
)  <->  ( H  e. 
Grp  /\  A  C_  ( Base `  H )  /\  ( Hs  A )  e.  Grp ) )
3828, 31, 36, 37syl3anbrc 1184 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  e.  (SubGrp `  H )
)
3926, 38impbida 596 1  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  (SubGrp `  H )  <->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    C_ wss 3174   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   Grpcgrp 13447  SubGrpcsubg 13618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-subg 13621
This theorem is referenced by:  nmznsg  13664
  Copyright terms: Public domain W3C validator