Step | Hyp | Ref
| Expression |
1 | | subgrcl 13039 |
. . . . 5
 SubGrp 
  |
2 | 1 | adantr 276 |
. . . 4
  SubGrp  SubGrp  
  |
3 | | eqid 2177 |
. . . . . . . 8
         |
4 | 3 | subgss 13034 |
. . . . . . 7
 SubGrp 
      |
5 | 4 | adantl 277 |
. . . . . 6
  SubGrp  SubGrp  
      |
6 | | subsubg.h |
. . . . . . . 8

↾s   |
7 | 6 | subgbas 13038 |
. . . . . . 7
 SubGrp 
      |
8 | 7 | adantr 276 |
. . . . . 6
  SubGrp  SubGrp  
      |
9 | 5, 8 | sseqtrrd 3195 |
. . . . 5
  SubGrp  SubGrp  
  |
10 | | eqid 2177 |
. . . . . . 7
         |
11 | 10 | subgss 13034 |
. . . . . 6
 SubGrp 
      |
12 | 11 | adantr 276 |
. . . . 5
  SubGrp  SubGrp  
      |
13 | 9, 12 | sstrd 3166 |
. . . 4
  SubGrp  SubGrp  
      |
14 | 6 | oveq1i 5885 |
. . . . . . 7
 ↾s    ↾s 
↾s   |
15 | 1 | adantr 276 |
. . . . . . . 8
  SubGrp     |
16 | | ressabsg 12535 |
. . . . . . . 8
  SubGrp    
↾s 
↾s   ↾s    |
17 | 15, 16 | mpd3an3 1338 |
. . . . . . 7
  SubGrp    
↾s 
↾s   ↾s    |
18 | 14, 17 | eqtrid 2222 |
. . . . . 6
  SubGrp    ↾s   ↾s    |
19 | 9, 18 | syldan 282 |
. . . . 5
  SubGrp  SubGrp  
 ↾s   ↾s    |
20 | | eqid 2177 |
. . . . . . 7
 ↾s   ↾s   |
21 | 20 | subggrp 13037 |
. . . . . 6
 SubGrp 
 ↾s    |
22 | 21 | adantl 277 |
. . . . 5
  SubGrp  SubGrp  
 ↾s    |
23 | 19, 22 | eqeltrrd 2255 |
. . . 4
  SubGrp  SubGrp  
 ↾s    |
24 | 10 | issubg 13033 |
. . . 4
 SubGrp  
    
↾s     |
25 | 2, 13, 23, 24 | syl3anbrc 1181 |
. . 3
  SubGrp  SubGrp  
SubGrp    |
26 | 25, 9 | jca 306 |
. 2
  SubGrp  SubGrp  
 SubGrp 
   |
27 | 6 | subggrp 13037 |
. . . 4
 SubGrp 
  |
28 | 27 | adantr 276 |
. . 3
  SubGrp  
SubGrp 
    |
29 | | simprr 531 |
. . . 4
  SubGrp  
SubGrp 
    |
30 | 7 | adantr 276 |
. . . 4
  SubGrp  
SubGrp 
        |
31 | 29, 30 | sseqtrd 3194 |
. . 3
  SubGrp  
SubGrp 
        |
32 | 18 | adantrl 478 |
. . . 4
  SubGrp  
SubGrp 
   ↾s   ↾s    |
33 | | eqid 2177 |
. . . . . 6
 ↾s   ↾s   |
34 | 33 | subggrp 13037 |
. . . . 5
 SubGrp 
 ↾s    |
35 | 34 | ad2antrl 490 |
. . . 4
  SubGrp  
SubGrp 
   ↾s    |
36 | 32, 35 | eqeltrd 2254 |
. . 3
  SubGrp  
SubGrp 
   ↾s    |
37 | 3 | issubg 13033 |
. . 3
 SubGrp  
    
↾s     |
38 | 28, 31, 36, 37 | syl3anbrc 1181 |
. 2
  SubGrp  
SubGrp 
  SubGrp    |
39 | 26, 38 | impbida 596 |
1
 SubGrp 
 SubGrp   SubGrp      |