ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srglmhm Unicode version

Theorem srglmhm 13344
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b  |-  B  =  ( Base `  R
)
srglmhm.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srglmhm  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R MndHom  R ) )
Distinct variable groups:    x, B    x, R    x, X    x,  .x.

Proof of Theorem srglmhm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 13318 . . . 4  |-  ( R  e. SRing  ->  R  e.  Mnd )
21, 1jca 306 . . 3  |-  ( R  e. SRing  ->  ( R  e. 
Mnd  /\  R  e.  Mnd ) )
32adantr 276 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( R  e.  Mnd  /\  R  e.  Mnd ) )
4 srglmhm.b . . . . . 6  |-  B  =  ( Base `  R
)
5 srglmhm.t . . . . . 6  |-  .x.  =  ( .r `  R )
64, 5srgcl 13321 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B  /\  x  e.  B )  ->  ( X  .x.  x )  e.  B )
763expa 1205 . . . 4  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  x )  e.  B )
87fmpttd 5691 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) ) : B --> B )
9 3anass 984 . . . . . . 7  |-  ( ( X  e.  B  /\  a  e.  B  /\  b  e.  B )  <->  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )
10 eqid 2189 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
114, 10, 5srgdi 13325 . . . . . . 7  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  ( a ( +g  `  R ) b ) )  =  ( ( X  .x.  a ) ( +g  `  R
) ( X  .x.  b ) ) )
129, 11sylan2br 288 . . . . . 6  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )  -> 
( X  .x.  (
a ( +g  `  R
) b ) )  =  ( ( X 
.x.  a ) ( +g  `  R ) ( X  .x.  b
) ) )
1312anassrs 400 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  ( a ( +g  `  R ) b ) )  =  ( ( X  .x.  a ) ( +g  `  R
) ( X  .x.  b ) ) )
14 eqid 2189 . . . . . 6  |-  ( x  e.  B  |->  ( X 
.x.  x ) )  =  ( x  e.  B  |->  ( X  .x.  x ) )
15 oveq2 5903 . . . . . 6  |-  ( x  =  ( a ( +g  `  R ) b )  ->  ( X  .x.  x )  =  ( X  .x.  (
a ( +g  `  R
) b ) ) )
164, 10srgacl 13333 . . . . . . . 8  |-  ( ( R  e. SRing  /\  a  e.  B  /\  b  e.  B )  ->  (
a ( +g  `  R
) b )  e.  B )
17163expb 1206 . . . . . . 7  |-  ( ( R  e. SRing  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a
( +g  `  R ) b )  e.  B
)
1817adantlr 477 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a
( +g  `  R ) b )  e.  B
)
19 simpll 527 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  R  e. SRing )
20 simplr 528 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  X  e.  B )
214, 5srgcl 13321 . . . . . . 7  |-  ( ( R  e. SRing  /\  X  e.  B  /\  ( a ( +g  `  R
) b )  e.  B )  ->  ( X  .x.  ( a ( +g  `  R ) b ) )  e.  B )
2219, 20, 18, 21syl3anc 1249 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  ( a ( +g  `  R ) b ) )  e.  B )
2314, 15, 18, 22fvmptd3 5629 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  ( a ( +g  `  R
) b ) )  =  ( X  .x.  ( a ( +g  `  R ) b ) ) )
24 oveq2 5903 . . . . . . 7  |-  ( x  =  a  ->  ( X  .x.  x )  =  ( X  .x.  a
) )
25 simprl 529 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  a  e.  B )
264, 5srgcl 13321 . . . . . . . 8  |-  ( ( R  e. SRing  /\  X  e.  B  /\  a  e.  B )  ->  ( X  .x.  a )  e.  B )
2719, 20, 25, 26syl3anc 1249 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  a )  e.  B
)
2814, 24, 25, 27fvmptd3 5629 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  a )  =  ( X  .x.  a ) )
29 oveq2 5903 . . . . . . 7  |-  ( x  =  b  ->  ( X  .x.  x )  =  ( X  .x.  b
) )
30 simprr 531 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  b  e.  B )
314, 5srgcl 13321 . . . . . . . 8  |-  ( ( R  e. SRing  /\  X  e.  B  /\  b  e.  B )  ->  ( X  .x.  b )  e.  B )
3219, 20, 30, 31syl3anc 1249 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  b )  e.  B
)
3314, 29, 30, 32fvmptd3 5629 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  b )  =  ( X  .x.  b ) )
3428, 33oveq12d 5913 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
( x  e.  B  |->  ( X  .x.  x
) ) `  a
) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 b ) )  =  ( ( X 
.x.  a ) ( +g  `  R ) ( X  .x.  b
) ) )
3513, 23, 343eqtr4d 2232 . . . 4  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( ( x  e.  B  |->  ( X  .x.  x ) ) `  a ) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 b ) ) )
3635ralrimivva 2572 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  A. a  e.  B  A. b  e.  B  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( ( x  e.  B  |->  ( X  .x.  x ) ) `  a ) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 b ) ) )
37 oveq2 5903 . . . . 5  |-  ( x  =  ( 0g `  R )  ->  ( X  .x.  x )  =  ( X  .x.  ( 0g `  R ) ) )
38 eqid 2189 . . . . . . 7  |-  ( 0g
`  R )  =  ( 0g `  R
)
394, 38srg0cl 13328 . . . . . 6  |-  ( R  e. SRing  ->  ( 0g `  R )  e.  B
)
4039adantr 276 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( 0g `  R )  e.  B )
414, 5srgcl 13321 . . . . . 6  |-  ( ( R  e. SRing  /\  X  e.  B  /\  ( 0g
`  R )  e.  B )  ->  ( X  .x.  ( 0g `  R ) )  e.  B )
4240, 41mpd3an3 1349 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( X  .x.  ( 0g `  R ) )  e.  B )
4314, 37, 40, 42fvmptd3 5629 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) `  ( 0g `  R ) )  =  ( X  .x.  ( 0g `  R ) ) )
444, 5, 38srgrz 13335 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( X  .x.  ( 0g `  R ) )  =  ( 0g `  R
) )
4543, 44eqtrd 2222 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) `  ( 0g `  R ) )  =  ( 0g `  R ) )
468, 36, 453jca 1179 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) : B --> B  /\  A. a  e.  B  A. b  e.  B  ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 ( a ( +g  `  R ) b ) )  =  ( ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( X  .x.  x ) ) `  b ) )  /\  ( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( 0g `  R ) )  =  ( 0g
`  R ) ) )
474, 4, 10, 10, 38, 38ismhm 12910 . 2  |-  ( ( x  e.  B  |->  ( X  .x.  x ) )  e.  ( R MndHom  R )  <->  ( ( R  e.  Mnd  /\  R  e.  Mnd )  /\  (
( x  e.  B  |->  ( X  .x.  x
) ) : B --> B  /\  A. a  e.  B  A. b  e.  B  ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 ( a ( +g  `  R ) b ) )  =  ( ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( X  .x.  x ) ) `  b ) )  /\  ( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( 0g `  R ) )  =  ( 0g
`  R ) ) ) )
483, 46, 47sylanbrc 417 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R MndHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468    |-> cmpt 4079   -->wf 5231   ` cfv 5235  (class class class)co 5895   Basecbs 12511   +g cplusg 12586   .rcmulr 12587   0gc0g 12758   Mndcmnd 12874   MndHom cmhm 12906  SRingcsrg 13314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-map 6675  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-plusg 12599  df-mulr 12600  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-mhm 12908  df-cmn 13222  df-mgp 13272  df-srg 13315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator