ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srglmhm Unicode version

Theorem srglmhm 13625
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b  |-  B  =  ( Base `  R
)
srglmhm.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srglmhm  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R MndHom  R ) )
Distinct variable groups:    x, B    x, R    x, X    x,  .x.

Proof of Theorem srglmhm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 13599 . . . 4  |-  ( R  e. SRing  ->  R  e.  Mnd )
21, 1jca 306 . . 3  |-  ( R  e. SRing  ->  ( R  e. 
Mnd  /\  R  e.  Mnd ) )
32adantr 276 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( R  e.  Mnd  /\  R  e.  Mnd ) )
4 srglmhm.b . . . . . 6  |-  B  =  ( Base `  R
)
5 srglmhm.t . . . . . 6  |-  .x.  =  ( .r `  R )
64, 5srgcl 13602 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B  /\  x  e.  B )  ->  ( X  .x.  x )  e.  B )
763expa 1205 . . . 4  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  x )  e.  B )
87fmpttd 5720 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) ) : B --> B )
9 3anass 984 . . . . . . 7  |-  ( ( X  e.  B  /\  a  e.  B  /\  b  e.  B )  <->  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )
10 eqid 2196 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
114, 10, 5srgdi 13606 . . . . . . 7  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  ( a ( +g  `  R ) b ) )  =  ( ( X  .x.  a ) ( +g  `  R
) ( X  .x.  b ) ) )
129, 11sylan2br 288 . . . . . 6  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )  -> 
( X  .x.  (
a ( +g  `  R
) b ) )  =  ( ( X 
.x.  a ) ( +g  `  R ) ( X  .x.  b
) ) )
1312anassrs 400 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  ( a ( +g  `  R ) b ) )  =  ( ( X  .x.  a ) ( +g  `  R
) ( X  .x.  b ) ) )
14 eqid 2196 . . . . . 6  |-  ( x  e.  B  |->  ( X 
.x.  x ) )  =  ( x  e.  B  |->  ( X  .x.  x ) )
15 oveq2 5933 . . . . . 6  |-  ( x  =  ( a ( +g  `  R ) b )  ->  ( X  .x.  x )  =  ( X  .x.  (
a ( +g  `  R
) b ) ) )
164, 10srgacl 13614 . . . . . . . 8  |-  ( ( R  e. SRing  /\  a  e.  B  /\  b  e.  B )  ->  (
a ( +g  `  R
) b )  e.  B )
17163expb 1206 . . . . . . 7  |-  ( ( R  e. SRing  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a
( +g  `  R ) b )  e.  B
)
1817adantlr 477 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a
( +g  `  R ) b )  e.  B
)
19 simpll 527 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  R  e. SRing )
20 simplr 528 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  X  e.  B )
214, 5srgcl 13602 . . . . . . 7  |-  ( ( R  e. SRing  /\  X  e.  B  /\  ( a ( +g  `  R
) b )  e.  B )  ->  ( X  .x.  ( a ( +g  `  R ) b ) )  e.  B )
2219, 20, 18, 21syl3anc 1249 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  ( a ( +g  `  R ) b ) )  e.  B )
2314, 15, 18, 22fvmptd3 5658 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  ( a ( +g  `  R
) b ) )  =  ( X  .x.  ( a ( +g  `  R ) b ) ) )
24 oveq2 5933 . . . . . . 7  |-  ( x  =  a  ->  ( X  .x.  x )  =  ( X  .x.  a
) )
25 simprl 529 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  a  e.  B )
264, 5srgcl 13602 . . . . . . . 8  |-  ( ( R  e. SRing  /\  X  e.  B  /\  a  e.  B )  ->  ( X  .x.  a )  e.  B )
2719, 20, 25, 26syl3anc 1249 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  a )  e.  B
)
2814, 24, 25, 27fvmptd3 5658 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  a )  =  ( X  .x.  a ) )
29 oveq2 5933 . . . . . . 7  |-  ( x  =  b  ->  ( X  .x.  x )  =  ( X  .x.  b
) )
30 simprr 531 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  b  e.  B )
314, 5srgcl 13602 . . . . . . . 8  |-  ( ( R  e. SRing  /\  X  e.  B  /\  b  e.  B )  ->  ( X  .x.  b )  e.  B )
3219, 20, 30, 31syl3anc 1249 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  b )  e.  B
)
3314, 29, 30, 32fvmptd3 5658 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  b )  =  ( X  .x.  b ) )
3428, 33oveq12d 5943 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
( x  e.  B  |->  ( X  .x.  x
) ) `  a
) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 b ) )  =  ( ( X 
.x.  a ) ( +g  `  R ) ( X  .x.  b
) ) )
3513, 23, 343eqtr4d 2239 . . . 4  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( ( x  e.  B  |->  ( X  .x.  x ) ) `  a ) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 b ) ) )
3635ralrimivva 2579 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  A. a  e.  B  A. b  e.  B  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( ( x  e.  B  |->  ( X  .x.  x ) ) `  a ) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 b ) ) )
37 oveq2 5933 . . . . 5  |-  ( x  =  ( 0g `  R )  ->  ( X  .x.  x )  =  ( X  .x.  ( 0g `  R ) ) )
38 eqid 2196 . . . . . . 7  |-  ( 0g
`  R )  =  ( 0g `  R
)
394, 38srg0cl 13609 . . . . . 6  |-  ( R  e. SRing  ->  ( 0g `  R )  e.  B
)
4039adantr 276 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( 0g `  R )  e.  B )
414, 5srgcl 13602 . . . . . 6  |-  ( ( R  e. SRing  /\  X  e.  B  /\  ( 0g
`  R )  e.  B )  ->  ( X  .x.  ( 0g `  R ) )  e.  B )
4240, 41mpd3an3 1349 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( X  .x.  ( 0g `  R ) )  e.  B )
4314, 37, 40, 42fvmptd3 5658 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) `  ( 0g `  R ) )  =  ( X  .x.  ( 0g `  R ) ) )
444, 5, 38srgrz 13616 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( X  .x.  ( 0g `  R ) )  =  ( 0g `  R
) )
4543, 44eqtrd 2229 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) `  ( 0g `  R ) )  =  ( 0g `  R ) )
468, 36, 453jca 1179 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) : B --> B  /\  A. a  e.  B  A. b  e.  B  ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 ( a ( +g  `  R ) b ) )  =  ( ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( X  .x.  x ) ) `  b ) )  /\  ( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( 0g `  R ) )  =  ( 0g
`  R ) ) )
474, 4, 10, 10, 38, 38ismhm 13163 . 2  |-  ( ( x  e.  B  |->  ( X  .x.  x ) )  e.  ( R MndHom  R )  <->  ( ( R  e.  Mnd  /\  R  e.  Mnd )  /\  (
( x  e.  B  |->  ( X  .x.  x
) ) : B --> B  /\  A. a  e.  B  A. b  e.  B  ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 ( a ( +g  `  R ) b ) )  =  ( ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( X  .x.  x ) ) `  b ) )  /\  ( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( 0g `  R ) )  =  ( 0g
`  R ) ) ) )
483, 46, 47sylanbrc 417 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R MndHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    |-> cmpt 4095   -->wf 5255   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   0gc0g 12958   Mndcmnd 13118   MndHom cmhm 13159  SRingcsrg 13595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-cmn 13492  df-mgp 13553  df-srg 13596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator