Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > srglmhm | Unicode version |
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.) |
Ref | Expression |
---|---|
srglmhm.b | |
srglmhm.t |
Ref | Expression |
---|---|
srglmhm | SRing MndHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgmnd 12943 | . . . 4 SRing | |
2 | 1, 1 | jca 306 | . . 3 SRing |
3 | 2 | adantr 276 | . 2 SRing |
4 | srglmhm.b | . . . . . 6 | |
5 | srglmhm.t | . . . . . 6 | |
6 | 4, 5 | srgcl 12946 | . . . . 5 SRing |
7 | 6 | 3expa 1203 | . . . 4 SRing |
8 | 7 | fmpttd 5663 | . . 3 SRing |
9 | 3anass 982 | . . . . . . 7 | |
10 | eqid 2175 | . . . . . . . 8 | |
11 | 4, 10, 5 | srgdi 12950 | . . . . . . 7 SRing |
12 | 9, 11 | sylan2br 288 | . . . . . 6 SRing |
13 | 12 | anassrs 400 | . . . . 5 SRing |
14 | eqid 2175 | . . . . . 6 | |
15 | oveq2 5873 | . . . . . 6 | |
16 | 4, 10 | srgacl 12958 | . . . . . . . 8 SRing |
17 | 16 | 3expb 1204 | . . . . . . 7 SRing |
18 | 17 | adantlr 477 | . . . . . 6 SRing |
19 | simpll 527 | . . . . . . 7 SRing SRing | |
20 | simplr 528 | . . . . . . 7 SRing | |
21 | 4, 5 | srgcl 12946 | . . . . . . 7 SRing |
22 | 19, 20, 18, 21 | syl3anc 1238 | . . . . . 6 SRing |
23 | 14, 15, 18, 22 | fvmptd3 5601 | . . . . 5 SRing |
24 | oveq2 5873 | . . . . . . 7 | |
25 | simprl 529 | . . . . . . 7 SRing | |
26 | 4, 5 | srgcl 12946 | . . . . . . . 8 SRing |
27 | 19, 20, 25, 26 | syl3anc 1238 | . . . . . . 7 SRing |
28 | 14, 24, 25, 27 | fvmptd3 5601 | . . . . . 6 SRing |
29 | oveq2 5873 | . . . . . . 7 | |
30 | simprr 531 | . . . . . . 7 SRing | |
31 | 4, 5 | srgcl 12946 | . . . . . . . 8 SRing |
32 | 19, 20, 30, 31 | syl3anc 1238 | . . . . . . 7 SRing |
33 | 14, 29, 30, 32 | fvmptd3 5601 | . . . . . 6 SRing |
34 | 28, 33 | oveq12d 5883 | . . . . 5 SRing |
35 | 13, 23, 34 | 3eqtr4d 2218 | . . . 4 SRing |
36 | 35 | ralrimivva 2557 | . . 3 SRing |
37 | oveq2 5873 | . . . . 5 | |
38 | eqid 2175 | . . . . . . 7 | |
39 | 4, 38 | srg0cl 12953 | . . . . . 6 SRing |
40 | 39 | adantr 276 | . . . . 5 SRing |
41 | 4, 5 | srgcl 12946 | . . . . . 6 SRing |
42 | 40, 41 | mpd3an3 1338 | . . . . 5 SRing |
43 | 14, 37, 40, 42 | fvmptd3 5601 | . . . 4 SRing |
44 | 4, 5, 38 | srgrz 12960 | . . . 4 SRing |
45 | 43, 44 | eqtrd 2208 | . . 3 SRing |
46 | 8, 36, 45 | 3jca 1177 | . 2 SRing |
47 | 4, 4, 10, 10, 38, 38 | ismhm 12715 | . 2 MndHom |
48 | 3, 46, 47 | sylanbrc 417 | 1 SRing MndHom |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 cmpt 4059 wf 5204 cfv 5208 (class class class)co 5865 cbs 12428 cplusg 12492 cmulr 12493 c0g 12626 cmnd 12682 MndHom cmhm 12711 SRingcsrg 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-mhm 12713 df-cmn 12886 df-mgp 12926 df-srg 12940 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |