| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srglmhm | Unicode version | ||
| Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| srglmhm.b |
|
| srglmhm.t |
|
| Ref | Expression |
|---|---|
| srglmhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgmnd 13916 |
. . . 4
| |
| 2 | 1, 1 | jca 306 |
. . 3
|
| 3 | 2 | adantr 276 |
. 2
|
| 4 | srglmhm.b |
. . . . . 6
| |
| 5 | srglmhm.t |
. . . . . 6
| |
| 6 | 4, 5 | srgcl 13919 |
. . . . 5
|
| 7 | 6 | 3expa 1227 |
. . . 4
|
| 8 | 7 | fmpttd 5783 |
. . 3
|
| 9 | 3anass 1006 |
. . . . . . 7
| |
| 10 | eqid 2229 |
. . . . . . . 8
| |
| 11 | 4, 10, 5 | srgdi 13923 |
. . . . . . 7
|
| 12 | 9, 11 | sylan2br 288 |
. . . . . 6
|
| 13 | 12 | anassrs 400 |
. . . . 5
|
| 14 | eqid 2229 |
. . . . . 6
| |
| 15 | oveq2 6002 |
. . . . . 6
| |
| 16 | 4, 10 | srgacl 13931 |
. . . . . . . 8
|
| 17 | 16 | 3expb 1228 |
. . . . . . 7
|
| 18 | 17 | adantlr 477 |
. . . . . 6
|
| 19 | simpll 527 |
. . . . . . 7
| |
| 20 | simplr 528 |
. . . . . . 7
| |
| 21 | 4, 5 | srgcl 13919 |
. . . . . . 7
|
| 22 | 19, 20, 18, 21 | syl3anc 1271 |
. . . . . 6
|
| 23 | 14, 15, 18, 22 | fvmptd3 5721 |
. . . . 5
|
| 24 | oveq2 6002 |
. . . . . . 7
| |
| 25 | simprl 529 |
. . . . . . 7
| |
| 26 | 4, 5 | srgcl 13919 |
. . . . . . . 8
|
| 27 | 19, 20, 25, 26 | syl3anc 1271 |
. . . . . . 7
|
| 28 | 14, 24, 25, 27 | fvmptd3 5721 |
. . . . . 6
|
| 29 | oveq2 6002 |
. . . . . . 7
| |
| 30 | simprr 531 |
. . . . . . 7
| |
| 31 | 4, 5 | srgcl 13919 |
. . . . . . . 8
|
| 32 | 19, 20, 30, 31 | syl3anc 1271 |
. . . . . . 7
|
| 33 | 14, 29, 30, 32 | fvmptd3 5721 |
. . . . . 6
|
| 34 | 28, 33 | oveq12d 6012 |
. . . . 5
|
| 35 | 13, 23, 34 | 3eqtr4d 2272 |
. . . 4
|
| 36 | 35 | ralrimivva 2612 |
. . 3
|
| 37 | oveq2 6002 |
. . . . 5
| |
| 38 | eqid 2229 |
. . . . . . 7
| |
| 39 | 4, 38 | srg0cl 13926 |
. . . . . 6
|
| 40 | 39 | adantr 276 |
. . . . 5
|
| 41 | 4, 5 | srgcl 13919 |
. . . . . 6
|
| 42 | 40, 41 | mpd3an3 1372 |
. . . . 5
|
| 43 | 14, 37, 40, 42 | fvmptd3 5721 |
. . . 4
|
| 44 | 4, 5, 38 | srgrz 13933 |
. . . 4
|
| 45 | 43, 44 | eqtrd 2262 |
. . 3
|
| 46 | 8, 36, 45 | 3jca 1201 |
. 2
|
| 47 | 4, 4, 10, 10, 38, 38 | ismhm 13480 |
. 2
|
| 48 | 3, 46, 47 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-map 6787 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-plusg 13109 df-mulr 13110 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-mhm 13478 df-cmn 13809 df-mgp 13870 df-srg 13913 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |