ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0d Unicode version

Theorem mulgt0d 8082
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
mulgt0d.3  |-  ( ph  ->  0  <  A )
mulgt0d.4  |-  ( ph  ->  0  <  B )
Assertion
Ref Expression
mulgt0d  |-  ( ph  ->  0  <  ( A  x.  B ) )

Proof of Theorem mulgt0d
StepHypRef Expression
1 ltd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 mulgt0d.3 . 2  |-  ( ph  ->  0  <  A )
3 ltd.2 . 2  |-  ( ph  ->  B  e.  RR )
4 mulgt0d.4 . 2  |-  ( ph  ->  0  <  B )
5 mulgt0 8034 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  ( A  x.  B ) )
61, 2, 3, 4, 5syl22anc 1239 1  |-  ( ph  ->  0  <  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   RRcr 7812   0cc0 7813    x. cmul 7818    < clt 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-mulrcl 7912  ax-rnegex 7922  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-pnf 7996  df-mnf 7997  df-ltxr 7999
This theorem is referenced by:  ltmul1a  8550  mulge0  8578  recgt0  8809  prodgt0gt0  8810  prodge0  8813  modqmulnn  10344  modqdi  10394  cos12dec  11777  tangtx  14344
  Copyright terms: Public domain W3C validator