ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0d Unicode version

Theorem mulgt0d 8054
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
mulgt0d.3  |-  ( ph  ->  0  <  A )
mulgt0d.4  |-  ( ph  ->  0  <  B )
Assertion
Ref Expression
mulgt0d  |-  ( ph  ->  0  <  ( A  x.  B ) )

Proof of Theorem mulgt0d
StepHypRef Expression
1 ltd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 mulgt0d.3 . 2  |-  ( ph  ->  0  <  A )
3 ltd.2 . 2  |-  ( ph  ->  B  e.  RR )
4 mulgt0d.4 . 2  |-  ( ph  ->  0  <  B )
5 mulgt0 8006 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  ( A  x.  B ) )
61, 2, 3, 4, 5syl22anc 1239 1  |-  ( ph  ->  0  <  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146   class class class wbr 3998  (class class class)co 5865   RRcr 7785   0cc0 7786    x. cmul 7791    < clt 7966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883  ax-mulrcl 7885  ax-rnegex 7895  ax-pre-mulgt0 7903
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-pnf 7968  df-mnf 7969  df-ltxr 7971
This theorem is referenced by:  ltmul1a  8522  mulge0  8550  recgt0  8778  prodgt0gt0  8779  prodge0  8782  modqmulnn  10310  modqdi  10360  cos12dec  11741  tangtx  13810
  Copyright terms: Public domain W3C validator