ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0d Unicode version

Theorem mulgt0d 7897
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
mulgt0d.3  |-  ( ph  ->  0  <  A )
mulgt0d.4  |-  ( ph  ->  0  <  B )
Assertion
Ref Expression
mulgt0d  |-  ( ph  ->  0  <  ( A  x.  B ) )

Proof of Theorem mulgt0d
StepHypRef Expression
1 ltd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 mulgt0d.3 . 2  |-  ( ph  ->  0  <  A )
3 ltd.2 . 2  |-  ( ph  ->  B  e.  RR )
4 mulgt0d.4 . 2  |-  ( ph  ->  0  <  B )
5 mulgt0 7851 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  ( A  x.  B ) )
61, 2, 3, 4, 5syl22anc 1217 1  |-  ( ph  ->  0  <  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   RRcr 7631   0cc0 7632    x. cmul 7637    < clt 7812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1re 7726  ax-addrcl 7729  ax-mulrcl 7731  ax-rnegex 7741  ax-pre-mulgt0 7749
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-pnf 7814  df-mnf 7815  df-ltxr 7817
This theorem is referenced by:  ltmul1a  8365  mulge0  8393  recgt0  8620  prodgt0gt0  8621  prodge0  8624  modqmulnn  10127  modqdi  10177  cos12dec  11485  tangtx  12941
  Copyright terms: Public domain W3C validator