| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqdi | Unicode version | ||
| Description: Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1024 |
. . . . 5
| |
| 2 | qcn 9755 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | simp2 1001 |
. . . . 5
| |
| 5 | qcn 9755 |
. . . . 5
| |
| 6 | 4, 5 | syl 14 |
. . . 4
|
| 7 | simp3l 1028 |
. . . . . 6
| |
| 8 | simp3r 1029 |
. . . . . . . . . 10
| |
| 9 | 8 | gt0ne0d 8585 |
. . . . . . . . 9
|
| 10 | qdivcl 9764 |
. . . . . . . . 9
| |
| 11 | 4, 7, 9, 10 | syl3anc 1250 |
. . . . . . . 8
|
| 12 | 11 | flqcld 10420 |
. . . . . . 7
|
| 13 | zq 9747 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 14 |
. . . . . 6
|
| 15 | qmulcl 9758 |
. . . . . 6
| |
| 16 | 7, 14, 15 | syl2anc 411 |
. . . . 5
|
| 17 | qcn 9755 |
. . . . 5
| |
| 18 | 16, 17 | syl 14 |
. . . 4
|
| 19 | 3, 6, 18 | subdid 8486 |
. . 3
|
| 20 | qcn 9755 |
. . . . . . . . 9
| |
| 21 | 7, 20 | syl 14 |
. . . . . . . 8
|
| 22 | qre 9746 |
. . . . . . . . . 10
| |
| 23 | 7, 22 | syl 14 |
. . . . . . . . 9
|
| 24 | 23, 8 | gt0ap0d 8702 |
. . . . . . . 8
|
| 25 | qre 9746 |
. . . . . . . . . 10
| |
| 26 | 1, 25 | syl 14 |
. . . . . . . . 9
|
| 27 | simp1r 1025 |
. . . . . . . . 9
| |
| 28 | 26, 27 | gt0ap0d 8702 |
. . . . . . . 8
|
| 29 | 6, 21, 3, 24, 28 | divcanap5d 8890 |
. . . . . . 7
|
| 30 | 29 | fveq2d 5580 |
. . . . . 6
|
| 31 | 30 | oveq2d 5960 |
. . . . 5
|
| 32 | 12 | zcnd 9496 |
. . . . . 6
|
| 33 | 3, 21, 32 | mulassd 8096 |
. . . . 5
|
| 34 | 31, 33 | eqtr2d 2239 |
. . . 4
|
| 35 | 34 | oveq2d 5960 |
. . 3
|
| 36 | 19, 35 | eqtrd 2238 |
. 2
|
| 37 | modqval 10469 |
. . . 4
| |
| 38 | 4, 7, 8, 37 | syl3anc 1250 |
. . 3
|
| 39 | 38 | oveq2d 5960 |
. 2
|
| 40 | qmulcl 9758 |
. . . 4
| |
| 41 | 1, 4, 40 | syl2anc 411 |
. . 3
|
| 42 | qmulcl 9758 |
. . . 4
| |
| 43 | 1, 7, 42 | syl2anc 411 |
. . 3
|
| 44 | 26, 23, 27, 8 | mulgt0d 8195 |
. . 3
|
| 45 | modqval 10469 |
. . 3
| |
| 46 | 41, 43, 44, 45 | syl3anc 1250 |
. 2
|
| 47 | 36, 39, 46 | 3eqtr4d 2248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-n0 9296 df-z 9373 df-q 9741 df-rp 9776 df-fl 10413 df-mod 10468 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |