ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqdi Unicode version

Theorem modqdi 10537
Description: Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.)
Assertion
Ref Expression
modqdi  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  ( B  mod  C
) )  =  ( ( A  x.  B
)  mod  ( A  x.  C ) ) )

Proof of Theorem modqdi
StepHypRef Expression
1 simp1l 1024 . . . . 5  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  A  e.  QQ )
2 qcn 9755 . . . . 5  |-  ( A  e.  QQ  ->  A  e.  CC )
31, 2syl 14 . . . 4  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  A  e.  CC )
4 simp2 1001 . . . . 5  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  B  e.  QQ )
5 qcn 9755 . . . . 5  |-  ( B  e.  QQ  ->  B  e.  CC )
64, 5syl 14 . . . 4  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  B  e.  CC )
7 simp3l 1028 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  C  e.  QQ )
8 simp3r 1029 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  0  <  C )
98gt0ne0d 8585 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  C  =/=  0 )
10 qdivcl 9764 . . . . . . . . 9  |-  ( ( B  e.  QQ  /\  C  e.  QQ  /\  C  =/=  0 )  ->  ( B  /  C )  e.  QQ )
114, 7, 9, 10syl3anc 1250 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( B  /  C )  e.  QQ )
1211flqcld 10420 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( |_ `  ( B  /  C
) )  e.  ZZ )
13 zq 9747 . . . . . . 7  |-  ( ( |_ `  ( B  /  C ) )  e.  ZZ  ->  ( |_ `  ( B  /  C ) )  e.  QQ )
1412, 13syl 14 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( |_ `  ( B  /  C
) )  e.  QQ )
15 qmulcl 9758 . . . . . 6  |-  ( ( C  e.  QQ  /\  ( |_ `  ( B  /  C ) )  e.  QQ )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  QQ )
167, 14, 15syl2anc 411 . . . . 5  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( C  x.  ( |_ `  ( B  /  C ) ) )  e.  QQ )
17 qcn 9755 . . . . 5  |-  ( ( C  x.  ( |_
`  ( B  /  C ) ) )  e.  QQ  ->  ( C  x.  ( |_ `  ( B  /  C
) ) )  e.  CC )
1816, 17syl 14 . . . 4  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( C  x.  ( |_ `  ( B  /  C ) ) )  e.  CC )
193, 6, 18subdid 8486 . . 3  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  ( B  -  ( C  x.  ( |_ `  ( B  /  C
) ) ) ) )  =  ( ( A  x.  B )  -  ( A  x.  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
20 qcn 9755 . . . . . . . . 9  |-  ( C  e.  QQ  ->  C  e.  CC )
217, 20syl 14 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  C  e.  CC )
22 qre 9746 . . . . . . . . . 10  |-  ( C  e.  QQ  ->  C  e.  RR )
237, 22syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  C  e.  RR )
2423, 8gt0ap0d 8702 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  C #  0
)
25 qre 9746 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  A  e.  RR )
261, 25syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  A  e.  RR )
27 simp1r 1025 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  0  <  A )
2826, 27gt0ap0d 8702 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  A #  0
)
296, 21, 3, 24, 28divcanap5d 8890 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( A  x.  B )  /  ( A  x.  C ) )  =  ( B  /  C
) )
3029fveq2d 5580 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( |_ `  ( ( A  x.  B )  /  ( A  x.  C )
) )  =  ( |_ `  ( B  /  C ) ) )
3130oveq2d 5960 . . . . 5  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( A  x.  C )  x.  ( |_ `  (
( A  x.  B
)  /  ( A  x.  C ) ) ) )  =  ( ( A  x.  C
)  x.  ( |_
`  ( B  /  C ) ) ) )
3212zcnd 9496 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( |_ `  ( B  /  C
) )  e.  CC )
333, 21, 32mulassd 8096 . . . . 5  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( A  x.  C )  x.  ( |_ `  ( B  /  C ) ) )  =  ( A  x.  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )
3431, 33eqtr2d 2239 . . . 4  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  ( C  x.  ( |_ `  ( B  /  C ) ) ) )  =  ( ( A  x.  C )  x.  ( |_ `  ( ( A  x.  B )  /  ( A  x.  C )
) ) ) )
3534oveq2d 5960 . . 3  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( A  x.  B )  -  ( A  x.  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  x.  B
)  -  ( ( A  x.  C )  x.  ( |_ `  ( ( A  x.  B )  /  ( A  x.  C )
) ) ) ) )
3619, 35eqtrd 2238 . 2  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  ( B  -  ( C  x.  ( |_ `  ( B  /  C
) ) ) ) )  =  ( ( A  x.  B )  -  ( ( A  x.  C )  x.  ( |_ `  (
( A  x.  B
)  /  ( A  x.  C ) ) ) ) ) )
37 modqval 10469 . . . 4  |-  ( ( B  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  ( B  mod  C )  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C
) ) ) ) )
384, 7, 8, 37syl3anc 1250 . . 3  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( B  mod  C )  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C
) ) ) ) )
3938oveq2d 5960 . 2  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  ( B  mod  C
) )  =  ( A  x.  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
40 qmulcl 9758 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  x.  B
)  e.  QQ )
411, 4, 40syl2anc 411 . . 3  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  B )  e.  QQ )
42 qmulcl 9758 . . . 4  |-  ( ( A  e.  QQ  /\  C  e.  QQ )  ->  ( A  x.  C
)  e.  QQ )
431, 7, 42syl2anc 411 . . 3  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  C )  e.  QQ )
4426, 23, 27, 8mulgt0d 8195 . . 3  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  0  <  ( A  x.  C ) )
45 modqval 10469 . . 3  |-  ( ( ( A  x.  B
)  e.  QQ  /\  ( A  x.  C
)  e.  QQ  /\  0  <  ( A  x.  C ) )  -> 
( ( A  x.  B )  mod  ( A  x.  C )
)  =  ( ( A  x.  B )  -  ( ( A  x.  C )  x.  ( |_ `  (
( A  x.  B
)  /  ( A  x.  C ) ) ) ) ) )
4641, 43, 44, 45syl3anc 1250 . 2  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( A  x.  B )  mod  ( A  x.  C
) )  =  ( ( A  x.  B
)  -  ( ( A  x.  C )  x.  ( |_ `  ( ( A  x.  B )  /  ( A  x.  C )
) ) ) ) )
4736, 39, 463eqtr4d 2248 1  |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  ( B  mod  C
) )  =  ( ( A  x.  B
)  mod  ( A  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925    x. cmul 7930    < clt 8107    - cmin 8243    / cdiv 8745   ZZcz 9372   QQcq 9740   |_cfl 10411    mod cmo 10467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-q 9741  df-rp 9776  df-fl 10413  df-mod 10468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator