ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recgt0 Unicode version

Theorem recgt0 8745
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
recgt0  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )

Proof of Theorem recgt0
StepHypRef Expression
1 0lt1 8025 . . . . 5  |-  0  <  1
2 0re 7899 . . . . . 6  |-  0  e.  RR
3 1re 7898 . . . . . 6  |-  1  e.  RR
42, 3ltnsymi 7998 . . . . 5  |-  ( 0  <  1  ->  -.  1  <  0 )
51, 4ax-mp 5 . . . 4  |-  -.  1  <  0
6 simpll 519 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A  e.  RR )
7 gt0ap0 8524 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
87adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A #  0
)
96, 8rerecclapd 8730 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  RR )
109renegcld 8278 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  -u ( 1  /  A )  e.  RR )
11 simpr 109 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  <  0 )
12 simpl 108 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR )
1312, 7rerecclapd 8730 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
1413adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  RR )
1514lt0neg1d 8413 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( (
1  /  A )  <  0  <->  0  <  -u ( 1  /  A
) ) )
1611, 15mpbid 146 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  -u ( 1  /  A
) )
17 simplr 520 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  A )
1810, 6, 16, 17mulgt0d 8021 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  (
-u ( 1  /  A )  x.  A
) )
1912recnd 7927 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  CC )
2019adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A  e.  CC )
21 recclap 8575 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
1  /  A )  e.  CC )
2220, 8, 21syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  CC )
2322, 20mulneg1d 8309 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( -u (
1  /  A )  x.  A )  = 
-u ( ( 1  /  A )  x.  A ) )
24 recidap2 8583 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
( 1  /  A
)  x.  A )  =  1 )
2520, 8, 24syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( (
1  /  A )  x.  A )  =  1 )
2625negeqd 8093 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  -u ( ( 1  /  A )  x.  A )  = 
-u 1 )
2723, 26eqtrd 2198 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( -u (
1  /  A )  x.  A )  = 
-u 1 )
2818, 27breqtrd 4008 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  -u 1 )
29 1red 7914 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  1  e.  RR )
3029lt0neg1d 8413 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  <  0  <->  0  <  -u 1 ) )
3128, 30mpbird 166 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  1  <  0 )
3231ex 114 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  <  0  ->  1  <  0 ) )
335, 32mtoi 654 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  ->  -.  ( 1  /  A
)  <  0 )
34 lenlt 7974 . . . 4  |-  ( ( 0  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 0  <_ 
( 1  /  A
)  <->  -.  ( 1  /  A )  <  0 ) )
352, 13, 34sylancr 411 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <_  (
1  /  A )  <->  -.  ( 1  /  A
)  <  0 ) )
3633, 35mpbird 166 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <_  ( 1  /  A ) )
37 recap0 8581 . . . 4  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
1  /  A ) #  0 )
3819, 7, 37syl2anc 409 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
) #  0 )
3919, 7, 21syl2anc 409 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  CC )
40 0cn 7891 . . . 4  |-  0  e.  CC
41 apsym 8504 . . . 4  |-  ( ( ( 1  /  A
)  e.  CC  /\  0  e.  CC )  ->  ( ( 1  /  A ) #  0  <->  0 #  (
1  /  A ) ) )
4239, 40, 41sylancl 410 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A ) #  0  <->  0 #  (
1  /  A ) ) )
4338, 42mpbid 146 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0 #  ( 1  /  A ) )
44 ltleap 8530 . . 3  |-  ( ( 0  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 0  < 
( 1  /  A
)  <->  ( 0  <_ 
( 1  /  A
)  /\  0 #  (
1  /  A ) ) ) )
452, 13, 44sylancr 411 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <  (
1  /  A )  <-> 
( 0  <_  (
1  /  A )  /\  0 #  ( 1  /  A ) ) ) )
4636, 43, 45mpbir2and 934 1  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    x. cmul 7758    < clt 7933    <_ cle 7934   -ucneg 8070   # cap 8479    / cdiv 8568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569
This theorem is referenced by:  prodgt0gt0  8746  ltdiv1  8763  ltrec1  8783  lerec2  8784  lediv12a  8789  recgt1i  8793  recreclt  8795  recgt0i  8801  recgt0ii  8802  recgt0d  8829  nnrecgt0  8895  nnrecl  9112
  Copyright terms: Public domain W3C validator