| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recgt0 | Unicode version | ||
| Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| recgt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 8199 |
. . . . 5
| |
| 2 | 0re 8072 |
. . . . . 6
| |
| 3 | 1re 8071 |
. . . . . 6
| |
| 4 | 2, 3 | ltnsymi 8172 |
. . . . 5
|
| 5 | 1, 4 | ax-mp 5 |
. . . 4
|
| 6 | simpll 527 |
. . . . . . . . . 10
| |
| 7 | gt0ap0 8699 |
. . . . . . . . . . 11
| |
| 8 | 7 | adantr 276 |
. . . . . . . . . 10
|
| 9 | 6, 8 | rerecclapd 8907 |
. . . . . . . . 9
|
| 10 | 9 | renegcld 8452 |
. . . . . . . 8
|
| 11 | simpr 110 |
. . . . . . . . 9
| |
| 12 | simpl 109 |
. . . . . . . . . . . 12
| |
| 13 | 12, 7 | rerecclapd 8907 |
. . . . . . . . . . 11
|
| 14 | 13 | adantr 276 |
. . . . . . . . . 10
|
| 15 | 14 | lt0neg1d 8588 |
. . . . . . . . 9
|
| 16 | 11, 15 | mpbid 147 |
. . . . . . . 8
|
| 17 | simplr 528 |
. . . . . . . 8
| |
| 18 | 10, 6, 16, 17 | mulgt0d 8195 |
. . . . . . 7
|
| 19 | 12 | recnd 8101 |
. . . . . . . . . . 11
|
| 20 | 19 | adantr 276 |
. . . . . . . . . 10
|
| 21 | recclap 8752 |
. . . . . . . . . 10
| |
| 22 | 20, 8, 21 | syl2anc 411 |
. . . . . . . . 9
|
| 23 | 22, 20 | mulneg1d 8483 |
. . . . . . . 8
|
| 24 | recidap2 8760 |
. . . . . . . . . 10
| |
| 25 | 20, 8, 24 | syl2anc 411 |
. . . . . . . . 9
|
| 26 | 25 | negeqd 8267 |
. . . . . . . 8
|
| 27 | 23, 26 | eqtrd 2238 |
. . . . . . 7
|
| 28 | 18, 27 | breqtrd 4070 |
. . . . . 6
|
| 29 | 1red 8087 |
. . . . . . 7
| |
| 30 | 29 | lt0neg1d 8588 |
. . . . . 6
|
| 31 | 28, 30 | mpbird 167 |
. . . . 5
|
| 32 | 31 | ex 115 |
. . . 4
|
| 33 | 5, 32 | mtoi 666 |
. . 3
|
| 34 | lenlt 8148 |
. . . 4
| |
| 35 | 2, 13, 34 | sylancr 414 |
. . 3
|
| 36 | 33, 35 | mpbird 167 |
. 2
|
| 37 | recap0 8758 |
. . . 4
| |
| 38 | 19, 7, 37 | syl2anc 411 |
. . 3
|
| 39 | 19, 7, 21 | syl2anc 411 |
. . . 4
|
| 40 | 0cn 8064 |
. . . 4
| |
| 41 | apsym 8679 |
. . . 4
| |
| 42 | 39, 40, 41 | sylancl 413 |
. . 3
|
| 43 | 38, 42 | mpbid 147 |
. 2
|
| 44 | ltleap 8705 |
. . 3
| |
| 45 | 2, 13, 44 | sylancr 414 |
. 2
|
| 46 | 36, 43, 45 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 |
| This theorem is referenced by: prodgt0gt0 8924 ltdiv1 8941 ltrec1 8961 lerec2 8962 lediv12a 8967 recgt1i 8971 recreclt 8973 recgt0i 8979 recgt0ii 8980 recgt0d 9007 nnrecgt0 9074 nnrecl 9293 |
| Copyright terms: Public domain | W3C validator |