ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recgt0 Unicode version

Theorem recgt0 8780
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
recgt0  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )

Proof of Theorem recgt0
StepHypRef Expression
1 0lt1 8058 . . . . 5  |-  0  <  1
2 0re 7932 . . . . . 6  |-  0  e.  RR
3 1re 7931 . . . . . 6  |-  1  e.  RR
42, 3ltnsymi 8031 . . . . 5  |-  ( 0  <  1  ->  -.  1  <  0 )
51, 4ax-mp 5 . . . 4  |-  -.  1  <  0
6 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A  e.  RR )
7 gt0ap0 8557 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
87adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A #  0
)
96, 8rerecclapd 8764 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  RR )
109renegcld 8311 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  -u ( 1  /  A )  e.  RR )
11 simpr 110 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  <  0 )
12 simpl 109 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR )
1312, 7rerecclapd 8764 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
1413adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  RR )
1514lt0neg1d 8446 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( (
1  /  A )  <  0  <->  0  <  -u ( 1  /  A
) ) )
1611, 15mpbid 147 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  -u ( 1  /  A
) )
17 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  A )
1810, 6, 16, 17mulgt0d 8054 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  (
-u ( 1  /  A )  x.  A
) )
1912recnd 7960 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  CC )
2019adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A  e.  CC )
21 recclap 8609 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
1  /  A )  e.  CC )
2220, 8, 21syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  CC )
2322, 20mulneg1d 8342 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( -u (
1  /  A )  x.  A )  = 
-u ( ( 1  /  A )  x.  A ) )
24 recidap2 8617 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
( 1  /  A
)  x.  A )  =  1 )
2520, 8, 24syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( (
1  /  A )  x.  A )  =  1 )
2625negeqd 8126 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  -u ( ( 1  /  A )  x.  A )  = 
-u 1 )
2723, 26eqtrd 2208 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( -u (
1  /  A )  x.  A )  = 
-u 1 )
2818, 27breqtrd 4024 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  -u 1 )
29 1red 7947 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  1  e.  RR )
3029lt0neg1d 8446 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  <  0  <->  0  <  -u 1 ) )
3128, 30mpbird 167 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  1  <  0 )
3231ex 115 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  <  0  ->  1  <  0 ) )
335, 32mtoi 664 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  ->  -.  ( 1  /  A
)  <  0 )
34 lenlt 8007 . . . 4  |-  ( ( 0  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 0  <_ 
( 1  /  A
)  <->  -.  ( 1  /  A )  <  0 ) )
352, 13, 34sylancr 414 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <_  (
1  /  A )  <->  -.  ( 1  /  A
)  <  0 ) )
3633, 35mpbird 167 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <_  ( 1  /  A ) )
37 recap0 8615 . . . 4  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
1  /  A ) #  0 )
3819, 7, 37syl2anc 411 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
) #  0 )
3919, 7, 21syl2anc 411 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  CC )
40 0cn 7924 . . . 4  |-  0  e.  CC
41 apsym 8537 . . . 4  |-  ( ( ( 1  /  A
)  e.  CC  /\  0  e.  CC )  ->  ( ( 1  /  A ) #  0  <->  0 #  (
1  /  A ) ) )
4239, 40, 41sylancl 413 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A ) #  0  <->  0 #  (
1  /  A ) ) )
4338, 42mpbid 147 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0 #  ( 1  /  A ) )
44 ltleap 8563 . . 3  |-  ( ( 0  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 0  < 
( 1  /  A
)  <->  ( 0  <_ 
( 1  /  A
)  /\  0 #  (
1  /  A ) ) ) )
452, 13, 44sylancr 414 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <  (
1  /  A )  <-> 
( 0  <_  (
1  /  A )  /\  0 #  ( 1  /  A ) ) ) )
4636, 43, 45mpbir2and 944 1  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   class class class wbr 3998  (class class class)co 5865   CCcc 7784   RRcr 7785   0cc0 7786   1c1 7787    x. cmul 7791    < clt 7966    <_ cle 7967   -ucneg 8103   # cap 8512    / cdiv 8602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603
This theorem is referenced by:  prodgt0gt0  8781  ltdiv1  8798  ltrec1  8818  lerec2  8819  lediv12a  8824  recgt1i  8828  recreclt  8830  recgt0i  8836  recgt0ii  8837  recgt0d  8864  nnrecgt0  8930  nnrecl  9147
  Copyright terms: Public domain W3C validator