ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recgt0 Unicode version

Theorem recgt0 8736
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
recgt0  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )

Proof of Theorem recgt0
StepHypRef Expression
1 0lt1 8016 . . . . 5  |-  0  <  1
2 0re 7890 . . . . . 6  |-  0  e.  RR
3 1re 7889 . . . . . 6  |-  1  e.  RR
42, 3ltnsymi 7989 . . . . 5  |-  ( 0  <  1  ->  -.  1  <  0 )
51, 4ax-mp 5 . . . 4  |-  -.  1  <  0
6 simpll 519 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A  e.  RR )
7 gt0ap0 8515 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
87adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A #  0
)
96, 8rerecclapd 8721 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  RR )
109renegcld 8269 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  -u ( 1  /  A )  e.  RR )
11 simpr 109 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  <  0 )
12 simpl 108 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR )
1312, 7rerecclapd 8721 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
1413adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  RR )
1514lt0neg1d 8404 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( (
1  /  A )  <  0  <->  0  <  -u ( 1  /  A
) ) )
1611, 15mpbid 146 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  -u ( 1  /  A
) )
17 simplr 520 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  A )
1810, 6, 16, 17mulgt0d 8012 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  (
-u ( 1  /  A )  x.  A
) )
1912recnd 7918 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  CC )
2019adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A  e.  CC )
21 recclap 8566 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
1  /  A )  e.  CC )
2220, 8, 21syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  CC )
2322, 20mulneg1d 8300 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( -u (
1  /  A )  x.  A )  = 
-u ( ( 1  /  A )  x.  A ) )
24 recidap2 8574 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
( 1  /  A
)  x.  A )  =  1 )
2520, 8, 24syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( (
1  /  A )  x.  A )  =  1 )
2625negeqd 8084 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  -u ( ( 1  /  A )  x.  A )  = 
-u 1 )
2723, 26eqtrd 2197 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( -u (
1  /  A )  x.  A )  = 
-u 1 )
2818, 27breqtrd 4002 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  -u 1 )
29 1red 7905 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  1  e.  RR )
3029lt0neg1d 8404 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  <  0  <->  0  <  -u 1 ) )
3128, 30mpbird 166 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  1  <  0 )
3231ex 114 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  <  0  ->  1  <  0 ) )
335, 32mtoi 654 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  ->  -.  ( 1  /  A
)  <  0 )
34 lenlt 7965 . . . 4  |-  ( ( 0  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 0  <_ 
( 1  /  A
)  <->  -.  ( 1  /  A )  <  0 ) )
352, 13, 34sylancr 411 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <_  (
1  /  A )  <->  -.  ( 1  /  A
)  <  0 ) )
3633, 35mpbird 166 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <_  ( 1  /  A ) )
37 recap0 8572 . . . 4  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
1  /  A ) #  0 )
3819, 7, 37syl2anc 409 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
) #  0 )
3919, 7, 21syl2anc 409 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  CC )
40 0cn 7882 . . . 4  |-  0  e.  CC
41 apsym 8495 . . . 4  |-  ( ( ( 1  /  A
)  e.  CC  /\  0  e.  CC )  ->  ( ( 1  /  A ) #  0  <->  0 #  (
1  /  A ) ) )
4239, 40, 41sylancl 410 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A ) #  0  <->  0 #  (
1  /  A ) ) )
4338, 42mpbid 146 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0 #  ( 1  /  A ) )
44 ltleap 8521 . . 3  |-  ( ( 0  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 0  < 
( 1  /  A
)  <->  ( 0  <_ 
( 1  /  A
)  /\  0 #  (
1  /  A ) ) ) )
452, 13, 44sylancr 411 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <  (
1  /  A )  <-> 
( 0  <_  (
1  /  A )  /\  0 #  ( 1  /  A ) ) ) )
4636, 43, 45mpbir2and 933 1  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   class class class wbr 3976  (class class class)co 5836   CCcc 7742   RRcr 7743   0cc0 7744   1c1 7745    x. cmul 7749    < clt 7924    <_ cle 7925   -ucneg 8061   # cap 8470    / cdiv 8559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560
This theorem is referenced by:  prodgt0gt0  8737  ltdiv1  8754  ltrec1  8774  lerec2  8775  lediv12a  8780  recgt1i  8784  recreclt  8786  recgt0i  8792  recgt0ii  8793  recgt0d  8820  nnrecgt0  8886  nnrecl  9103
  Copyright terms: Public domain W3C validator